Baar, M., Coquille, L., Mayer, H., Hölzel, M., Rogava, M., Tüting, T., & Bovier, A. (2016). A stochastic model for immunotherapy of cancer. Scientific Reports, 6(1), 24169. https://doi.org/10.1038/srep24169
Beckman, R. A., & Loeb, L. A. (2005). Negative Clonal Selection in Tumor Evolution. Genetics, 171(4), 2123–2131. https://doi.org/10.1534/genetics.105.040840
Blundell, J. R., Schwartz, K., Francois, D., Fisher, D. S., Sherlock, G., & Levy, S. F. (2019). The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nature Ecology & Evolution, 3(2), 293–301. https://doi.org/10.1038/s41559-018-0758-1
Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K. W., Vogelstein, B., & Nowak, M. A. (2010). Accumulation of driver and passenger mutations during tumor progression. Proceedings of the National Academy of Sciences, 107(43), 18545–18550. https://doi.org/10.1073/pnas.1010978107
Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), giaa007. https://doi.org/10.1093/gigascience/giaa007
Cao, Y., Gillespie, D. T., & Petzold, L. R. (2006). Efficient step size selection for the tau-leaping simulation method. The Journal of Chemical Physics, 124(4), 044109. https://doi.org/10.1063/1.2159468
Castillo, F., & Virgilio, N. (2015). Stochastic Modeling of Cancer Tumors using Moran Models and an Application to Cancer Genetics [Thesis, Rice University]. https://scholarship.rice.edu/handle/1911/87795
Desai, M. M., & Fisher, D. S. (2007). Beneficial Mutation–Selection Balance and the Effect of Linkage on Positive Selection. Genetics, 176(3), 1759–1798. https://doi.org/10.1534/genetics.106.067678
Foo, J., Leder, K., & Michor, F. (2011). Stochastic dynamics of cancer initiation. Physical Biology, 8(1), 015002. https://doi.org/10.1088/1478-3975/8/1/015002
Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics, 115(4), 1716–1733. https://doi.org/10.1063/1.1378322
Kinnersley, M., Schwartz, K., Yang, D.-D., Sherlock, G., & Rosenzweig, F. (2021). Evolutionary dynamics and structural consequences of de novo beneficial mutations and mutant lineages arising in a constant environment. BMC Biology, 19(1), 20. https://doi.org/10.1186/s12915-021-00954-0
Kvitek, D. J., & Sherlock, G. (2013). Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLOS Genetics, 9(11), e1003972. https://doi.org/10.1371/journal.pgen.1003972
Levy, S. F., Blundell, J. R., Venkataram, S., Petrov, D. A., Fisher, D. S., & Sherlock, G. (2015). Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature, 519(7542), 181–186. https://doi.org/10.1038/nature14279
Marchetti, L., Priami, C., & Thanh, V. H. (2017). Simulation Algorithms for Computational Systems Biology. Springer International Publishing. https://doi.org/10.1007/978-3-319-63113-4
McFarland, C. D., Mirny, L. A., & Korolev, K. S. (2014). Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proceedings of the National Academy of Sciences, 111(42), 15138–15143. https://doi.org/10.1073/pnas.1404341111
Neher, R. A. (2013). Genetic draft, selective interference, and population genetics of rapid adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1), 195–215. https://doi.org/10.1146/annurev-ecolsys110512-135920
Nguyen Ba, A. N., Cvijović, I., Rojas Echenique, J. I., Lawrence, K. R., Rego-Costa, A., Liu, X., Levy, S. F., & Desai, M. M. (2019). High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature, 575(7783), 494– 499. https://doi.org/10.1038/s41586-019-1749-3
Wang, C.-H., Matin, S., George, A. B., & Korolev, K. S. (2019). Pinned, locked, pushed, and pulled traveling waves in structured environments. Theoretical Population Biology, 127, 102–119. https://doi.org/10.1016/j.tpb.2019.04.003
Wild, G. (2011). Inclusive Fitness from Multitype Branching Processes. Bulletin of Mathematical Biology, 73(5), 1028–1051. https://doi.org/10.1007/s11538-010-9551-2
Yakovlev, A. Y., Stoimenova, V. K., & Yanev, N. M. (2008). Branching Processes as Models of Progenitor Cell Populations and Estimation of the Offspring Distributions. Journal of the American Statistical Association, 103(484), 1357–1366. https://doi.org/10.1198/016214508000000913