Adnan, R. M., Petroselli, A., Heddam, S., Santos, C. A. G., & Kisi, O. (2021). Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach. Natural Hazards, 105(3), 2987–3011.
DOI: https://doi.org/10.1007/s11069-020-04438-2
Afolayan, H. A., Ojokoh, B. A., & Falaki, S. O. (2016). Comparative analysis of rainfall prediction models using neural network and fuzzy logic. International Journal of Soft Computing and Engineering, 5(6), 4–7.
Aftab, S., Ahmad, M., Hameed, N., Bashir, M. S., Ali, I., & Nawaz, Z. (2018). Rainfall prediction using data mining techniques: A systematic literature review. International journal of advanced computer science and applications, 9(5), 143–150.
DOI: https://doi.org/10.14569/IJACSA.2018.090518
Aguasca-Colomo, R., Castellanos-Nieves, D., & Méndez, M. (2019). Comparative Analysis of Rainfall Prediction Models Using Machine Learning in Islands with Complex Orography: Tenerife Island. Applied Sciences, 9(22), 4931. https://doi.org/10.3390/app9224931
DOI: https://doi.org/10.3390/app9224931
Altaf, I., Butt, M. A., & Zaman, M. (2021). A Pragmatic Comparison of Supervised Machine Learning Classifiers for Disease Diagnosis. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 1515–1520). IEEE. https://doi.org/10.1109/ICIRCA51532.2021.9544582
DOI: https://doi.org/10.1109/ICIRCA51532.2021.9544582
Banday, I.R., Zaman, M., Quadri, S.M.K., Fayaz, S.A., Butt, M.A. (2022). Big data in academia: A proposed framework for improving students performance. Revue d'Intelligence Artificielle, Vol. 36, No. 4, pp. 589–595. https://doi.org/10.18280/ria.360411
DOI: https://doi.org/10.18280/ria.360411
Barrera–Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204
DOI: https://doi.org/10.1016/j.mlwa.2021.100204
Dhamodaran, S., & Lakshmi, M. (2021). Comparative analysis of spatial interpolation with climatic changes using inverse distance method. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6725–6734. https://doi.org/10.1007/s12652-020-02296-1
DOI: https://doi.org/10.1007/s12652-020-02296-1
Fayaz, S. A., Kaul, S., Zaman, M., & Butt, M. A. (2022). An adaptive gradient boosting model for the prediction of rainfall using ID3 as a base estimator. Revue d'Intelligence Artificielle, 36(2), 241–250. https://doi.org/10.18280/ria.360208
DOI: https://doi.org/10.18280/ria.360208
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021a). To ameliorate classification accuracy using ensemble distributed decision tree (DDT) vote approach: An empirical discourse of geographical data mining. Procedia Computer Science, 184, 935–940. https://doi.org/10.1016/j.procs.2021.03.116
DOI: https://doi.org/10.1016/j.procs.2021.03.116
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021b). An application of logistic model tree (LMT) algorithm to ameliorate Prediction accuracy of meteorological data. International Journal of Advanced Technology and Engineering Exploration, 8(84), 1424–40.
DOI: https://doi.org/10.19101/IJATEE.2021.874586
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021c). A hybrid adaptive grey wolf Levenberg-Marquardt (GWLM) and nonlinear autoregressive with exogenous input (NARX) neural network model for the prediction of rainfall. International Journal of Advanced Technology and Engineering Exploration, 9(89), 509–522. https://doi.org/10.19101/IJATEE.2021.874647
DOI: https://doi.org/10.19101/IJATEE.2021.874647
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022a). Numerical and Experimental Investigation of Meteorological Data Using Adaptive Linear M5 Model Tree for the Prediction of Rainfall. Review of Computer Engineering Research, 9(1), 1–12.
DOI: https://doi.org/10.18488/76.v9i1.2961
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022b). Knowledge Discovery in Geographical Sciences—A Systematic Survey of Various Machine Learning Algorithms for Rainfall Prediction. In International Conference on Innovative Computing and Communications (pp. 593–608). Springer.
DOI: https://doi.org/10.1007/978-981-16-2597-8_51
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022c). Performance Evaluation of GINI Index and Information Gain Criteria on Geographical Data: An Empirical Study Based on JAVA and Python. In International Conference on Innovative Computing and Communications (pp. 249–265). Springer.
DOI: https://doi.org/10.1007/978-981-16-3071-2_22
Fayaz, S. A., Zaman, M., Kaul, S., & Butt, M. A. (2022). Is Deep Learning on Tabular Data Enough? An Assessment. International Journal of Advanced Computer Science and Applications, 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130454
DOI: https://doi.org/10.14569/IJACSA.2022.0130454
Kaul, S., Fayaz, S. A., Zaman, M., & Butt, M. A. (2022). Is decision tree obsolete in its original form? A burning debate. Revue d'Intelligence Artificielle, 36(1), 105–113.
DOI: https://doi.org/10.18280/ria.360112
Kaul, S., Zaman, M., Fayaz, S. A., & Butt, M. A. (2023). Performance Stagnation of Meteorological Data of Kashmir. In International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems (vol. 471). Springer. https://doi.org/10.1007/978-981-19-2535-1_63
DOI: https://doi.org/10.1007/978-981-19-2535-1_63
Mohd, R., Butt, M. A., & Baba, M. Z. (2020). GWLM–NARX: grey wolf levenberg–marquardt-based neural network for rainfall prediction. Data Technologies and Applications, 54(1), 85–102. https://doi.org/10.1108/DTA-08-2019-0130. 2020.
DOI: https://doi.org/10.1108/DTA-08-2019-0130
Mohd, R., Butt, M. A., & Baba, M. Z. (2022). Grey Wolf-Based Linear Regression Model for Rainfall Prediction. International Journal of Information Technologies and Systems Approach, 15(1), 1-18.
DOI: https://doi.org/10.4018/IJITSA.290004
Niu, J., & Zhang, W. (2015). Comparative analysis of statistical models in rainfall prediction. In 2015 IEEE International Conference on Information and Automation (pp. 2187-2190). IEEE.
DOI: https://doi.org/10.1109/ICInfA.2015.7279650
Pucheta, J. A., Cristian, M. R. R., Martín, R. H., Carlos, A. S., Patiño, H. D., & Benjamín, R. K. (2009). A feedforward neural networks-based nonlinear autoregressive model for forecasting time series. Comput y Sistemas, 14(4), 423–435.
Rezaie-balf, M., Naganna, S. R., Ghaemi, A., & Deka, P. C. (2017). Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of hydrology, 553, 356–373.
DOI: https://doi.org/10.1016/j.jhydrol.2017.08.006
Singh, P., & Borah, B. (2013). Indian summer monsoon rainfall prediction using artificial neural network. Stochastic Environmental Research and Risk Assessment, 27(7), 1585–1599.
DOI: https://doi.org/10.1007/s00477-013-0695-0
Singh, U., Chauhan, S., Krishnamachari, A., & Vig, L. (2015). Ensemble of deep long short term memory networks for labelling origin of replication sequences. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp.1–7). IEEE. http://dx.doi.org/10.1109/DSAA.2015.7344871
DOI: https://doi.org/10.1109/DSAA.2015.7344871
Wu, C., & Chau, K.-W. (2013). Prediction of rainfall time series using modular soft computing methods. Engineering Applications of Artificial Intelligence, 26(3), 997–1007. https://doi.org/10.1016/j.engappai.2012.05.023
DOI: https://doi.org/10.1016/j.engappai.2012.05.023
Xiang, Y., Gou, L., He, L., Xia, S., & Wang, W. (2018). A SVR–ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73, 874–883. https://doi.org/10.1016/j.asoc.2018.09.018
DOI: https://doi.org/10.1016/j.asoc.2018.09.018
Yang, Y., Lin, H., Guo, Z., & Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis. Comput Geosci, 33(1), 20–30.
DOI: https://doi.org/10.1016/j.cageo.2006.05.010
Zaman, M., & Butt, M. A. (2012). Information translation: a practitioners approach. In World Congress on Engineering and Computer Science (WCECS).
Zaz, S. N., Romshoo, S. A., Krishnamoorthy, R. T., & Viswanadhapalli, Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19(1), 15-37. https://doi.org/10.5194/acp-19-15-2019
DOI: https://doi.org/10.5194/acp-19-15-2019