NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES

Łukasz SEMKŁO


Poznan University of Technology, Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan (Poland)

Łukasz GIERZ

lukasz.gierz@put.poznan.pl
Poznan University of Technology, Institute of Machine Design, Faculty of Mechanical Engineering, Poznan, (Poland)

Abstract

The paper presents a comparative analysis of the operation of two variants of centrifugal pump rotors, a description of the main parameters, and the influence of the blade geometry on the performance characteristics obtained. Rotors have been designed using the arc and point method. Based on the developed 3D CAD models, the rotors were printed using the rapid prototyping method on a 3D printer in FFF (Fused Filament Fabrication) technology, in order to experimentally verify the performance, by placing them on the Armfield FM50 test stand. The analysis part of the CFD includes a fluid flow in Ansys Fluent. The process of creating a flow domain and generating a structural mesh was described, along with the definition of boundary conditions, the definition of physical conditions and the turbulence model. The distribution of pressures and velocities in the meridional sections is shown graphically. The chapter with the experimental analysis contains a description of the measuring stand and the methodology used. The results obtained made it possible to generate the characteristics, making it possible to compare the results received. The results allowed to note the influence of geometry on the behavior of the rotors during operation in the system and to indicate that the arc rotor gets a 7% higher head and 2% higher efficiency than the point method rotor, which gives the basis for its commercial use in industry.


Keywords:

pump, CFD, the head of the pump, power, efficiency

Anderson, H. (1980). Centrifugal Pumps. Trade and Technical Press
  Google Scholar

Barmaki, R., & Ehghaghi, M. (2019). Experimental Investigation of a Centrifugal Pump Hydraulic Performance in Hydraulic Transmission of Solids. Mechanics and Mechanical Engineering, 23(1), 259–270. http//doi.org/10.2478/mme-2019-0035
DOI: https://doi.org/10.2478/mme-2019-0035   Google Scholar

Bosioc, A., Moș, D., Draghici, I., Muntean, S., &Anton, L. E. (2019). Experimental analysis of a pump equipped with an axial rotor with variable speed. IOP Conference Series: Earth and Environmental Science, 240, 032021. https://doi.org/10.1088/1755-1315/240/3/032021
DOI: https://doi.org/10.1088/1755-1315/240/3/032021   Google Scholar

Cengel, Y., & Cimbala, J. (2013). Fluid Mechanics Fundamentals and Applications. McGraw Hill.
  Google Scholar

Cheah, K., Lee, T., Winoto, S., & Zhao, Z. (2007). Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions. International Journal of Rotating Machinery, 2007, 083641. http://doi.org/10.1155/2007/83641
DOI: https://doi.org/10.1155/2007/83641   Google Scholar

Ciałkowski, M., Brodzik, Ł., Wróblewska, A., Frąckowiak, A., Bartoszewicz, J., Joachmiak, M., & Semkło, Ł. (2015). Mechanika płynów – zbiór zadań z rozwiązaniami. Wydawnictwo Politechniki Poznańskiej.
  Google Scholar

Ciocan, G., & Kueny, J.-L. (2006). Experimental Analysis of the Rotor-Stator Interaction in a Pump-Turbine. 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan.
  Google Scholar

Fan, H., & Piao, Y. (2017). Cooling design of an aero-engine fuel centrifugal pump at shut-off. Advances in Mechanical Engineering, 9(6). http://doi.org/10.1177/1687814017709700
DOI: https://doi.org/10.1177/1687814017709700   Google Scholar

Jędral, W. (2001). Pompy wirowe. Wydawnictwo Naukowe PWN.
  Google Scholar

Kaczmarczyk, T., Ihnatowicz, E., Żywica, G., & Kaniecki, M. (2019). Experimental study of the prototype of a Roto-Jet pump for the domestic ORC power plant. Archives of thermodynamics, 40(3), 83–108. http://doi.org/10.24425/ather.2019.129995
  Google Scholar

Kijewski, J. (1993). Maszynoznawstwo. Wydawnictwo Szkolne i Pedagogiczne
  Google Scholar

Li, W., Ji, L., Shi, W., Yang, Y., Awais, M., Wang, Y., & Xu, X. (2020). Correlation research of rotor–stator interaction and shafting vibration in a mixed-flow pump. Journal of Low Frequency Noise, Vibration and Active Control, 39(1), 72–83. http://doi.org/10.1177/1461348419836530
DOI: https://doi.org/10.1177/1461348419836530   Google Scholar

Mousmoulis, G., Kassanos, I., Aggidis, G., & Anagnostopoulos, I. (2021). Numerical simulation of the performance of a centrifugal pump with a semi-open impeller under normal and cavitating conditions. Applied Mathematical Modelling, 89(2), 1814–1834. https://doi.org/10.1016/j.apm.2020.08.074
DOI: https://doi.org/10.1016/j.apm.2020.08.074   Google Scholar

Polish Standard PN-90/M-44000. Przenośniki cieczy.
  Google Scholar

Song, H., Zhang, J., & Zhang, F. (2022). Rotor strength and critical speed analysis of a vertical long shaft fire pump connected with different shaft lengths. Scientific reports, 12, 9351. https://doi.org/10.1038/s41598-022-13320-z
DOI: https://doi.org/10.1038/s41598-022-13320-z   Google Scholar

Steinbrecher, Ch., Skoda, R., Schilling, R., Müller, N., Breitenbach, A., & Mendler, N. (2003). Numerical Simulation of a Self-Stabilizing Rotor of a Centrifugal Pump. Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (pp. 71–78). ASME. http://doi.org/10.1115/FEDSM2003-45468
DOI: https://doi.org/10.1115/FEDSM2003-45468   Google Scholar

Troskolański, A. T. (1973). Pompy wirowe. Wydawnictwo Naukowo-Techniczne.
  Google Scholar

Zhu, L., Yuan, S., Yuan, J., Zhou, J., Jin, R., & Wang, H. (2011). Numerical simulation for rotor-stator interaction of centrifugal pump with different tongues. Journal of Agricultural Engineering, 27(10), 50–55. http://doi.org/:10.3969/ j.issn.1002-6819.2011.10.009
  Google Scholar

Download


Published
2022-12-21

Cited by

SEMKŁO, Łukasz, & GIERZ, Łukasz. (2022). NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES. Applied Computer Science, 18(4), 82–95. https://doi.org/10.35784/acs-2022-30

Authors

Łukasz SEMKŁO 

Poznan University of Technology, Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan Poland

Authors

Łukasz GIERZ 
lukasz.gierz@put.poznan.pl
Poznan University of Technology, Institute of Machine Design, Faculty of Mechanical Engineering, Poznan, Poland

Statistics

Abstract views: 107
PDF downloads: 109


License

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.