NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Article Sidebar
Open full text
Issue Vol. 18 No. 4 (2022)
-
APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
Jarosław GIL, Andrzej POLAŃSKI5-15
-
HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL16-27
-
DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES
Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA28-52
-
ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK, Emilia ŁABUĆ53-67
-
PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY68-81
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Łukasz SEMKŁO, Łukasz GIERZ82-95
-
A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI96-115
-
IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA116-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper presents a comparative analysis of the operation of two variants of centrifugal pump rotors, a description of the main parameters, and the influence of the blade geometry on the performance characteristics obtained. Rotors have been designed using the arc and point method. Based on the developed 3D CAD models, the rotors were printed using the rapid prototyping method on a 3D printer in FFF (Fused Filament Fabrication) technology, in order to experimentally verify the performance, by placing them on the Armfield FM50 test stand. The analysis part of the CFD includes a fluid flow in Ansys Fluent. The process of creating a flow domain and generating a structural mesh was described, along with the definition of boundary conditions, the definition of physical conditions and the turbulence model. The distribution of pressures and velocities in the meridional sections is shown graphically. The chapter with the experimental analysis contains a description of the measuring stand and the methodology used. The results obtained made it possible to generate the characteristics, making it possible to compare the results received. The results allowed to note the influence of geometry on the behavior of the rotors during operation in the system and to indicate that the arc rotor gets a 7% higher head and 2% higher efficiency than the point method rotor, which gives the basis for its commercial use in industry.
Keywords:
References
Anderson, H. (1980). Centrifugal Pumps. Trade and Technical Press
Barmaki, R., & Ehghaghi, M. (2019). Experimental Investigation of a Centrifugal Pump Hydraulic Performance in Hydraulic Transmission of Solids. Mechanics and Mechanical Engineering, 23(1), 259–270. http//doi.org/10.2478/mme-2019-0035 DOI: https://doi.org/10.2478/mme-2019-0035
Bosioc, A., Moș, D., Draghici, I., Muntean, S., &Anton, L. E. (2019). Experimental analysis of a pump equipped with an axial rotor with variable speed. IOP Conference Series: Earth and Environmental Science, 240, 032021. https://doi.org/10.1088/1755-1315/240/3/032021 DOI: https://doi.org/10.1088/1755-1315/240/3/032021
Cengel, Y., & Cimbala, J. (2013). Fluid Mechanics Fundamentals and Applications. McGraw Hill.
Cheah, K., Lee, T., Winoto, S., & Zhao, Z. (2007). Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions. International Journal of Rotating Machinery, 2007, 083641. http://doi.org/10.1155/2007/83641 DOI: https://doi.org/10.1155/2007/83641
Ciałkowski, M., Brodzik, Ł., Wróblewska, A., Frąckowiak, A., Bartoszewicz, J., Joachmiak, M., & Semkło, Ł. (2015). Mechanika płynów – zbiór zadań z rozwiązaniami. Wydawnictwo Politechniki Poznańskiej.
Ciocan, G., & Kueny, J.-L. (2006). Experimental Analysis of the Rotor-Stator Interaction in a Pump-Turbine. 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan.
Fan, H., & Piao, Y. (2017). Cooling design of an aero-engine fuel centrifugal pump at shut-off. Advances in Mechanical Engineering, 9(6). http://doi.org/10.1177/1687814017709700 DOI: https://doi.org/10.1177/1687814017709700
Jędral, W. (2001). Pompy wirowe. Wydawnictwo Naukowe PWN.
Kaczmarczyk, T., Ihnatowicz, E., Żywica, G., & Kaniecki, M. (2019). Experimental study of the prototype of a Roto-Jet pump for the domestic ORC power plant. Archives of thermodynamics, 40(3), 83–108. http://doi.org/10.24425/ather.2019.129995
Kijewski, J. (1993). Maszynoznawstwo. Wydawnictwo Szkolne i Pedagogiczne
Li, W., Ji, L., Shi, W., Yang, Y., Awais, M., Wang, Y., & Xu, X. (2020). Correlation research of rotor–stator interaction and shafting vibration in a mixed-flow pump. Journal of Low Frequency Noise, Vibration and Active Control, 39(1), 72–83. http://doi.org/10.1177/1461348419836530 DOI: https://doi.org/10.1177/1461348419836530
Mousmoulis, G., Kassanos, I., Aggidis, G., & Anagnostopoulos, I. (2021). Numerical simulation of the performance of a centrifugal pump with a semi-open impeller under normal and cavitating conditions. Applied Mathematical Modelling, 89(2), 1814–1834. https://doi.org/10.1016/j.apm.2020.08.074 DOI: https://doi.org/10.1016/j.apm.2020.08.074
Polish Standard PN-90/M-44000. Przenośniki cieczy.
Song, H., Zhang, J., & Zhang, F. (2022). Rotor strength and critical speed analysis of a vertical long shaft fire pump connected with different shaft lengths. Scientific reports, 12, 9351. https://doi.org/10.1038/s41598-022-13320-z DOI: https://doi.org/10.1038/s41598-022-13320-z
Steinbrecher, Ch., Skoda, R., Schilling, R., Müller, N., Breitenbach, A., & Mendler, N. (2003). Numerical Simulation of a Self-Stabilizing Rotor of a Centrifugal Pump. Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (pp. 71–78). ASME. http://doi.org/10.1115/FEDSM2003-45468 DOI: https://doi.org/10.1115/FEDSM2003-45468
Troskolański, A. T. (1973). Pompy wirowe. Wydawnictwo Naukowo-Techniczne.
Zhu, L., Yuan, S., Yuan, J., Zhou, J., Jin, R., & Wang, H. (2011). Numerical simulation for rotor-stator interaction of centrifugal pump with different tongues. Journal of Agricultural Engineering, 27(10), 50–55. http://doi.org/:10.3969/ j.issn.1002-6819.2011.10.009
Article Details
Abstract views: 313
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
