IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Article Sidebar
Open full text
Issue Vol. 18 No. 4 (2022)
-
APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
Jarosław GIL, Andrzej POLAŃSKI5-15
-
HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL16-27
-
DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES
Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA28-52
-
ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK, Emilia ŁABUĆ53-67
-
PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY68-81
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Łukasz SEMKŁO, Łukasz GIERZ82-95
-
A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI96-115
-
IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA116-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Maintenance has a key impact on the efficiency of the production processes because the efficiency of the machines determines the ability of the system to produce in accordance with the assumed schedule. The key element of the system performance assessment remains the availability of technological equipment, which directly translates into the efficiency and effectiveness of the performed production tasks. Taking into account the dynamic nature of manufacturing processes, the proper selection of machinery and equipment for the implementation of specific production tasks becomes an issue of particular importance. The purpose of this research was to determine the impact of technical and non-technical factors on the material selection of machine tools for production tasks and to develop a method of supporting the selection of production resources using the AHP and Fuzzy AHP methods. The research was carried out in a manufacturing company from the automotive industry.
Keywords:
References
Ahmad, R., & Kamaruddin, S. (2012). An Overview of Time-Based and Condition-Based Maintenance in Industrial Application. Computers & Industrial Engineering, 63(1), 135–149. https://doi.org/10.1016/j.cie.2012.02.002 DOI: https://doi.org/10.1016/j.cie.2012.02.002
Al-Najjar, B. (2007). The lack of maintenance and not maintenance which cost: A model to describe and quantify the impact of vibration-based maintenance on company’s business. International Journal of Production Economics, 107, 260- 273. https://doi.org/10.1016/j.ijpe.2006.09.005 DOI: https://doi.org/10.1016/j.ijpe.2006.09.005
Al-Najjar, B., & Algabroun, H. (2018). A Model for Increasing Effectiveness and Profitability of Maintenance Performance: A Case Study. In: M. Zuo, L. Ma, J. Mathe & H. Z. Huang (Eds.), Engineering Asset Management 2016. Lecture Notes in Mechanical Engineering (pp. 1–12). Springer. https://doi.org/10.1007/978-3-319-62274-3_1 DOI: https://doi.org/10.1007/978-3-319-62274-3_1
Aspinwall, E., & Elgharib, M. (2013). TPM Implementation in Large and Medium Size Organizations. Journal of Manufacturing Technology Management, 24(5), 688-710. https://doi.org/10.1108/17410381311327972 DOI: https://doi.org/10.1108/17410381311327972
Azizi, A. (2015). Evaluation Improvement of Production Productivity Performance Using Statistical Process Control, Overall Equipment Efficiency, and Autonomous Maintenance. Procedia Manufacturing, 2, 186–190. https://doi.org/10.1016/j.promfg.2015.07.032 DOI: https://doi.org/10.1016/j.promfg.2015.07.032
Bałdowska-Witos, P., Piotrowska, K., Kruszelnicka, W., Błaszczak, M., Tomporowski, A., Opielak, M., Kasner, R., & Flizikowski, J. (2020). Managing the uncertainty and accuracy of life cycle assessment results for the process of beverage bottle molding. Polymers, 12(6), 1320. http://doi.org/ 10.3390/polym12061320 DOI: https://doi.org/10.3390/polym12061320
Bayazit, O. (2005). Use of AHP in decision-making for flexible manufacturing system. Journal of Manufacturing Technology Management, 16(7), 808–819. https://doi.org/10.1108/17410380510626204 DOI: https://doi.org/10.1108/17410380510626204
Blanchard, B. (2004). Logistic Engineering and Management. 5th Ed. Prentice Hall Inc.
Burduk, A., Musiał, K., Kochańska, J., Górnicka, D., & Stetsenko, A. (2019). Tabu search and genetic algorithm for production process scheduling problem. Logforum, 15(2), 181–189. http://doi.org/10.17270/J.LOG.2019.315 DOI: https://doi.org/10.17270/J.LOG.2019.315
Crespo Márquez, A., Moreu de León, P., Gómez Fernández, J. F., Parra Márquez, C., & López Campos, M. (2009). The maintenance management Framework. A practical view to maintenance management, Journal of Quality in Maintenance Engineering, 15(2), 167–178. https://doi.org/10.1108/13552510910961110 DOI: https://doi.org/10.1108/13552510910961110
Das, S., & Chattopadhyay, A. B. (2003). Application of the analytic hierarchy process for estimating the state of tool wear. International Journal of Machine Tools & Manufacture, 43(1), 1–6. https://doi.org/10.1016/S0890-6955(02)00168-2 DOI: https://doi.org/10.1016/S0890-6955(02)00168-2
Gola, A. (2014). Economic aspects of manufacturing system design. Actual Problems of Economics, 156(6), 205–212.
Kosicka, E., Gola, A., & Pawlak, J. (2019). Application-based support of machine maintenance. IFACPapersOnLine, 52(10), 131–135. http://doi.org/10.1016/j.ifacol.2019.10.033 DOI: https://doi.org/10.1016/j.ifacol.2019.10.033
Kutlu, A. (2012). Fuzzy failure modes and effects analysis by fuzzy TOPSIS-based fuzzy AHP. Experts Systems with Application, 39(1), 61-67. https://doi.org/10.1016/j.eswa.2011.06.044 DOI: https://doi.org/10.1016/j.eswa.2011.06.044
Madu, C. (2000). Competing through maintenance strategies. International Journal of Quality and Reliability Management, 17(9), 937–948. https://doi.org/10.1108/02656710010378752 DOI: https://doi.org/10.1108/02656710010378752
Maletic, D., Maletic, C., Al-Najjar, B., & Gomiscek, B. (2014). The Role of Maintenance in Improving Company’s Competitiveness and Profitability: A Case Study in A Textile Company. Journal of Manufacturing Technology Management, 25(4), 441–456. https://doi.org/10.1108/JMTM-04-2013-0033 DOI: https://doi.org/10.1108/JMTM-04-2013-0033
Pizon, J., Kulisz, M., & Lipski, J. (2021). Matrix profile implementation perspective in Industrial Internet of Things production maintenance application. Journal of Physics: Conference Series, 1736(1), 012036. http://doi.org/10.1088/1742-6596/1736/1/012036 DOI: https://doi.org/10.1088/1742-6596/1736/1/012036
Rakyta, M., Fusko, M., Haluska, M., & Grznar, P. (2015). Maintenance support system for Reconfigurable manufacturing systems. Annals of DAAAM and Proceedings of the International DAAAM Symposium (pp. 1102–1108). DAAAM International. http://doi.org/10.2507/26th.daaam.proceedings.155 DOI: https://doi.org/10.2507/26th.daaam.proceedings.155
Relich, M., & Świć, A. (2020). Parametric estimation and constraint programming-based planning and simulation of production cost of a new product. Applied Sciences, 10(18), 6330. http://doi.org/10.3390/APP10186330 DOI: https://doi.org/10.3390/app10186330
Saaty, T. (1980). The analytic hierarchy process. McGraw–Hill. DOI: https://doi.org/10.21236/ADA214804
Sagar, M. K., & Singh, D. (2012). Supplier Selection Criteria: Study of Automobile Sector in India. International Journal of Engineering Research and Development, 4(4), 34–39.
Swic, A., & Gola, A. (2013). Economic analysis of casing parts production in a flexible manufacturing system. Actual Problems of Economics, 141(3), 526–533.
Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an artificial neural network in the modelling of heat cutting effects on the strength of adhesive joints at elevated temperature with imprecisive adhesive mix ratios. Materials, 15(3), 721. http://doi.org/10.3390/ma15030721 DOI: https://doi.org/10.3390/ma15030721
Varela, M. L. R., Putnik, G. D., Manupati, V. K., Rajyalakshmi, G., Trojanowska, J., & Machado, J. (2018). Collaborative manufacturing based on cloud, and on other i4.0 oriented principles and technologies: a systematic literature review and reflections. Management and Production Engineering Review, 9(3), 90–99. http://doi.org/10.24425/119538
Vollmann, T. E., Berry, W. L., Whybark, D. C., & Jacobs, F. R. (2005). Manufacturing Planning and Control for Supply Chain Management. 5th Ed. McGraw- Hill/Irwin.
Zubrzycki, J., Świć, A., Sobaszek, Ł., Kovac, J., Kralikova, R., Jencik, R., Smidova, N., Arapi, P., Dulencin, P., & Homza, J. (2021). Cyber-physical systems technologies as a key factor in the process of Industry 4.0 and smart manufacturing development. Applied Computer Science, 17(4), 84–99. http://doi.org/10.23743/acs2021-31 DOI: https://doi.org/10.35784/acs-2021-31
Article Details
Abstract views: 613
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
