USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS

Marcin Badurowicz

m.badurowicz@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science (Poland)
https://orcid.org/0000-0003-2249-4219

Sebastian Łagowski


Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science (Poland)

Abstract

In the paper, the authors are presenting the analysis of implementation of IoT system of road quality analysis. The proposed system has been prepared with edge, on-device processing in mind, allowing for reduction of amount of data being sent to cloud computing aggregation subsystem, sending only 2.5% of the original data. Several algorithms for road quality analysis has been implemented on a real device and tested in a real-world conditions. The system has been compared to the state-of-the-art offline processing approach and shown very similar results.


Keywords:

road quality, internet of things, edge processing

Astarita, V., Caruso, M. V., Danieli, G., Festa, D. C., Giofrè, V. P., Iuele, T., & Vaiana, R. (2012). A mobile application for road surface quality control: UNIquALroad. Procedia - Social and Behavioral Sciences, 54, 1135–1144. https://doi.org/10.1016/j.sbspro.2012.09.828
DOI: https://doi.org/10.1016/j.sbspro.2012.09.828   Google Scholar

Badurowicz, M., & Cieplak, T. (2019). Real-time road quality assessment using smartphones and cloud lambda architecture. MATEC Web of Conferences, 252, 03011. https://doi.org/10.1051/matecconf/201925203011
DOI: https://doi.org/10.1051/matecconf/201925203011   Google Scholar

Badurowicz, M., Cieplak, T., & Montusiewicz, J. (2016). The cloud computing stream analysis system for road artefacts detection. In P. Gaj, A. Kwiecień & P. Stera (Eds.), Computer Networks: 23rd International Conference, Proceedings (pp. 360–369). Springer International Publishing. https://doi.org/10.1007/978-3-319-39207-3_31
DOI: https://doi.org/10.1007/978-3-319-39207-3_31   Google Scholar

Badurowicz, M., Montusiewicz, J., & Karczmarek, P. (2020). Detection of road artefacts using fuzzy adaptive thresholding. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.1–8). IEEE. https://doi.org/10.1109/FUZZ48607.2020.9177822
DOI: https://doi.org/10.1109/FUZZ48607.2020.9177822   Google Scholar

Czerwinski, D., & Przylucki, S. (2016). Open-source microcontroller development board in wireless sensor networks classes. ICERI2016 Proceedings, 1, 2294–2300. https://doi.org/10.21125/iceri.2016.1504
DOI: https://doi.org/10.21125/iceri.2016.1504   Google Scholar

ESP32 Series Datasheet. (2023). Espressif Systems (Shanghal) https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
  Google Scholar

Generalna Dyrekcja Dróg Krajowych i Autostrad. (2022). Raport o stanie technicznym nawierzchni sieci dróg krajowych na koniec 2021 roku. https://www.gov.pl/web/gddkia/raport-o-stanie-technicznymnawierzchni-sieci-drog-krajowych-na-koniec-2021-roku
  Google Scholar

Gonzalez, L. C., Moreno, R.., Escalante, H. J., Martinez, F., & Carlos, M. R. (2017). Learning roadway surface disruption patterns using the bag of words representation. IEEE Transactions on Intelligent Transportation Systems (pp. 1–13). IEEE. https://doi.org/10.1109/TITS.2017.2662483
DOI: https://doi.org/10.1109/TITS.2017.2662483   Google Scholar

Hart, M. (2022). TinyGPSPlus. https://github.com/mikalhart/TinyGPSPluskamami.pl. (2022). GY-GPS6MV2. https://kamami.pl/gps/563067-gy-gps6mv2-modul-gps-z-ukladem-u-blox-neo-6m.html
  Google Scholar

Kono, A. (2020). MPU9250_asukiaaa. https://github.com/asukiaaa/MPU9250_asukiaaa
  Google Scholar

Loprencipe, G., de Almeida Filho, F. G. V., de Oliveira, R. H., & Bruno, S. (2021). Validation of a low-cost pavement monitoring inertial-based system for urban road networks. Sensors, 21(9), 3127. https://doi.org/10.3390/s21093127
DOI: https://doi.org/10.3390/s21093127   Google Scholar

Mednis, A., Strazdins, G., Zviedris, R., Kanonirs, G., & Selavo, L. (2011). Real time pothole detection using android smartphones with accelerometers. 2011 International Conference on Distributed Computing in Sensor Systems and Workshops, DCOSS’11 (pp. 1-6). IEEE. https://doi.org/10.1109/DCOSS.2011.5982206
DOI: https://doi.org/10.1109/DCOSS.2011.5982206   Google Scholar

Mohan, P., Padmanabhan, V. N., & Ramjee, R. (2008). TrafficSense : Rich monitoring of road and traffic conditions using mobile smartphones. In The 6th ACM Conference on Embedded Networked Sensor Systems (pp. 1–29). The ACM Digital Library. https://doi.org/MSR-TR-2008-59
  Google Scholar

Nguyen, V. K., Renault, É., & Ha, V. H. (2019). Road anomaly detection using smartphone: a brief analysis. Mobile, Secure, and Programmable Networking. MSPN 2018. Lecture Notes in Computer Science (vol. 11005). Springer. https://doi.org/10.1007/978-3-030-03101-5_8
DOI: https://doi.org/10.1007/978-3-030-03101-5_8   Google Scholar

Pérez, E., Araiza, J. C., Pozos, D., Bonilla, E., Hernández, J. C., & Cortes, J. A. (2021). Application for functionality and registration in the cloud of a microcontroller development board for IoT in AWS. Applied Computer Science, 17(2), 14–27. https://doi.org/10.23743/acs-2021-10
DOI: https://doi.org/10.35784/acs-2021-10   Google Scholar

Powiatowy Zarząd Dróg w Hrubieszowie. (2022). Ocena stanu technicznego dróg powiatowych powiatu hrubieszowskiego. https://www.starostwo.hrubieszow.pl/dat/attach/2022-04/31923_ad-10-ocena-stanutechnicznego-2021.pdf
  Google Scholar

Singh, G., Bansal, D., Sofat, S., & Aggarwal, N. (2017). Smart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcing. Pervasive and Mobile Computing, 40, 71–88. https://doi.org/10.1016/j.pmcj.2017.06.002
DOI: https://doi.org/10.1016/j.pmcj.2017.06.002   Google Scholar

Vamsee, K. K. M., Vimalkumar, K., Vinodhini, R. E., & Archanaa, R. (2017). An early detection-warning system to identify speed breakers and bumpy roads using sensors in smartphones. International Journal of Electrical and Computer Engineering, 7(3), 1377–1384. https://doi.org/10.11591/ijece.v7i3.pp1377-1384
DOI: https://doi.org/10.11591/ijece.v7i3.pp1377-1384   Google Scholar

Download


Published
2023-03-31

Cited by

Badurowicz, M., & Łagowski, S. (2023). USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS. Applied Computer Science, 19(1), 15–24. https://doi.org/10.35784/acs-2023-02

Authors

Marcin Badurowicz 
m.badurowicz@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science Poland
https://orcid.org/0000-0003-2249-4219

Authors

Sebastian Łagowski 

Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science Poland

Statistics

Abstract views: 171
PDF downloads: 103


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.