Akshatha, K. R., Karunakar, A. K., Shenoy, S. B., Pai, A. K., Nagaraj, N. H., & Rohatgi, S. S. (2022). Human detection in aerial thermal images using faster R-CNN and SSD algorithms. Electronics, 11(7), 1151. https://doi.org/10.3390/electronics11071151
DOI: https://doi.org/10.3390/electronics11071151
Alnuaim, A. A., Zakariah, M., Hatamleh, W. A., Tarazi, H., Tripathi, V., & Amoatey, E. T. (2022). Humancomputer interaction with hand gesture recognition using ResNet and MobileNet. Computational
Intelligence Neuroscience, 2022, 8777355. https://doi.org/10.1155/2022/8777355
DOI: https://doi.org/10.1155/2022/8777355
Bertasius, G., Feichtenhofer, C., Tran, D., Shi, J., & Torresani, L. (2019). Learning temporal pose estimation from sparsely-labeled Videos. ArXiv, abs/1906.04016. https://doi.org/10.48550/arXiv.1906.04016
Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2016). Realtime multi-person 2D pose estimation using part affinity fields. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 1302–1310). IEEE. https://doi.org/10.1109/CVPR.2017.143.
DOI: https://doi.org/10.1109/CVPR.2017.143
Chen, W., Jiang, Z., Guo, H., & Ni, X. (2020). Fall Detection Based on Key Points of Human-Skeleton Using OpenPose. Symmetry, 12(5), 744. https://doi.org/10.3390/sym12050744
DOI: https://doi.org/10.3390/sym12050744
Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., & Sun, J. (2018). Cascaded pyramid network for multi-person pose estimation. Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition (pp. 7103–7112). IEEE. https://doi.org/10.1109/CVPR.2018.00742
DOI: https://doi.org/10.1109/CVPR.2018.00742
Chung, J.-L., Ong, L.-Y., & Leow, M. C. (2022). Comparative analysis of skeleton-based human pose estimation. Future Internet, 14(12), 380. https://doi.org/10.3390/fi14120380
DOI: https://doi.org/10.3390/fi14120380
Dewangan, D. K., & Sahu, S. P. (2021). Deep learning-based speed bump detection model for intelligent vehicle system using raspberry pi. IEEE Sensors Journal, 21, 3570–3578. https://doi.org/10.1109/JSEN.2020.3027097
DOI: https://doi.org/10.1109/JSEN.2020.3027097
Fang, H., Li, J., Tang, H., Xu, C., Zhu, H., Xiu, Y., Li, Y.-L., & Lu, C. (2022). AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. ArXiv, abs/2211.03375. https://doi.org/10.48550/arXiv.2211.03375
DOI: https://doi.org/10.1109/TPAMI.2022.3222784
Fang, H., Xie, S., Tai, Y.-W., & Lu, C. (2017). RMPE: Regional multi-person pose estimation. IEEE International Conference on Computer Vision (pp. 2353–2362). IEEE. https://doi.org/10.48550/arXiv.1612.00137
DOI: https://doi.org/10.1109/ICCV.2017.256
Gamra, M. B., & Akhloufi, M. A. (2021). A review of deep learning techniques for 2D and 3D human pose estimation. Image Vis. Comput, 114, 104282. https://doi.org/10.1016/j.imavis.2021.104282
DOI: https://doi.org/10.1016/j.imavis.2021.104282
Gautam, B. P., Noda, Y., Gautam, R., Sharma, H. P., Sato, K., & Neupane, S. B. (2020). Body part localization and pose tracking by using deepercut algorithm for king cobra's BBL (Biting Behavior Learning). International Conference on Networking Network Applications (pp. 422–429). IEEE. https://doi.org/10.1109/NaNA51271.2020.00078
DOI: https://doi.org/10.1109/NaNA51271.2020.00078
Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO series in 2021. ArXiv, abs/2107.08430. https://doi.org/10.48550/arXiv.2107.08430
Jegham, I., Khalifa, A. B., Alouani, I., & Mahjoub, M. A. (2020). Vision-based human action recognition: An overview and real world challenges. Forensic Science International: Digital Investigation, 32, 200901. https://doi.org/10.1016/j.fsidi.2019.200901
DOI: https://doi.org/10.1016/j.fsidi.2019.200901
Jeong, E., Kim, J., & Ha, S. (2022). TensorRT-Based framework and optimization methodology for deep learning inference on jetson boards. ACM Transactions on Embedded Computing Systems, 21, 1–26. https://doi.org/10.1145/3508391
DOI: https://doi.org/10.1145/3508391
Khirodkar, R., Chari, V., Agrawal, A., & Tyagi, A. (2021). Multi-Instance pose networks: rethinking top-down pose estimation. IEEE/CVF International Conference on Computer Vision (pp. 3102-3111). IEEE. https://doi.org/10.48550/arXiv.2101.11223
DOI: https://doi.org/10.1109/ICCV48922.2021.00311
Kong, Y., & Fu, Y. (2022). Human action recognition and prediction: A survey. International Journal of Computer Vision, 130(5), 1366-1401. https://doi.org/10.48550/arXiv.1806.11230
DOI: https://doi.org/10.1007/s11263-022-01594-9
Kreiss, S., Bertoni, L., & Alahi, A. (2021). OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association. IEEE Transactions on Intelligent Transportation Systems, 23, 13498–13511. https://doi.org/10.48550/arXiv.2103.02440
DOI: https://doi.org/10.1109/TITS.2021.3124981
Liu, M.-J., Wan, L., Wang, B., & Wang, T.-L. (2023). SE-YOLOv4: shuffle expansion YOLOv4 for pedestrian detection based on PixelShuffle. Applied Intelligence, 2023. https://doi.org/10.1007/s10489-023-04456-0
DOI: https://doi.org/10.1007/s10489-023-04456-0
Nguyen, S.-H., Le, T.-T.-H., Nguyen, H.-B., Phan, T.-T., Nguyen, C.-T., & Vu, H. (2022). Improving the Hand Pose Estimation from Egocentric Vision via HOPE-Net and Mask R-CNN. International Conference on Multimedia Analysis Pattern Recognition (pp. 1-6). IEEE. https://doi.org/10.1109/MAPR56351.2022.9924768
DOI: https://doi.org/10.1109/MAPR56351.2022.9924768
Park, K., Jang, W., Lee, W., Nam, K., Seong, K., Chai, K., & Li, W.-S. (2020). Real-time mask detection on google edge TPU. ArXiv, abs/2010.04427. https://doi.org/10.48550/arXiv.2010.04427
Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., & Schiele, B. (2016). DeepCut: Joint subset partition and labeling for multi person pose estimation. Conference on Computer Vision Pattern Recognition (pp. 4929–4937). IEEE. https://doi.org/10.1109/CVPR.2016.533
DOI: https://doi.org/10.1109/CVPR.2016.533
Sediqi, K. M., & Lee, H. J. (2021). A novel upsampling and context convolution for image semantic segmentation. Sensors, 21(6), 2170. https://doi.org/10.3390/s21062170
DOI: https://doi.org/10.3390/s21062170
Shiraishi, Y. (2020). Latest trend of edge aI devices. Journal of The Japan Institute of Electronics Packaging, 23(2), 145-149. https://doi.org/10.5104/jiep.23.145
DOI: https://doi.org/10.5104/jiep.23.145
Sipola, T., Alatalo, J., Kokkonen, T., & Rantonen, M. (2022). Artificial intelligence in the IoT Era: A Review of Edge AI Hardware and Software. 31st Conference of Open Innovations Association (pp. 320-331). IEEE. https://doi.org/10.23919/FRUCT54823.2022.9770931
DOI: https://doi.org/10.23919/FRUCT54823.2022.9770931
Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. IEEE/CVF Conference on Computer Vision Pattern Recognition (pp. 5686–5696.) IEEE. https://doi.org/10.1109/CVPR.2019.00584.
DOI: https://doi.org/10.1109/CVPR.2019.00584
Süzen, A. A., Duman, B., & Şen, B. (2020). Benchmark analysis of jetson TX2, jetson nano and raspberry PI using Deep-CNN. International Congress on Human-Computer Interaction, Optimization Robotic Applications (pp.1–5.) IEEE. https://doi.org/10.1109/HORA49412.2020.9152915
DOI: https://doi.org/10.1109/HORA49412.2020.9152915
Tran, H. Y., Bui, T. M., Pham, T.-L., & Le, V.-H. (2022). An evaluation of 2D human pose estimation based on ResNet backbone. Journal of Engineering Research and Sciences, 1(2), 59–67. https://doi.org/10.55708/js0103007
DOI: https://doi.org/10.55708/js0103007
Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. European Conference on Computer Vision. Lecture Notes in Computer Science (pp. 472–487). Springer. https://doi.org/10.1007/978-3-030-01231-1_29
DOI: https://doi.org/10.1007/978-3-030-01231-1_29
Zhang, H.-B., Zhang, Y.-X., Zhong, B., Lei, Q., Yang, L., Du, J.-X., & Chen, D.-S. (2019). A comprehensive survey of vision-based human action recognition methods. Sensors, 19(5), 1005–1016. https://doi.org/10.3390/s19051005
DOI: https://doi.org/10.3390/s19051005