Alshayeji, M. H., Ellethy, H., Abed, S., & Gupta, R. (2022). Computer-aided detection of breast cancer on the Wisconsin dataset: An artificial neural networks approach. Biomedical Signal Processing and Control, 71(PA), 103141. https://doi.org/10.1016/j.bspc.2021.103141
DOI: https://doi.org/10.1016/j.bspc.2021.103141
Alshdaifat, E., Al-hassan, M., & Aloqaily, A. (2021). Effective heterogeneous ensemble classification: An alternative approach for selecting base classifiers. ICT Express, 7(3), 342–349. https://doi.org/10.1016/j.icte.2020.11.005
DOI: https://doi.org/10.1016/j.icte.2020.11.005
Baumann, P., Hochbaum, D. S., & Yang, Y. T. (2019). A comparative study of the leading machine learning techniques and two new optimization algorithms. European Journal of Operational Research, 272(3), 1041–1057. https://doi.org/10.1016/j.ejor.2018.07.009
DOI: https://doi.org/10.1016/j.ejor.2018.07.009
bin Basir, M. A., & binti Ahmad, F. (2017). New Feature Selection Model Based Ensemble Rule Classifiers Method for Dataset Classification. International Journal of Artificial Intelligence & Applications, 8(2), 37–43. https://doi.org/10.5121/ijaia.2017.8204
DOI: https://doi.org/10.5121/ijaia.2017.8204
Chandrika, Divya, C., Gowramma, G. S., & Varun, C. R. (2018). A comparative analysis on evaluation of classification algorithms based on ionospheric data. International Journal of Computer Sciences and Engineering, 6(5), 636–640. https://doi.org/10.26438/ijcse/v6i5.636640
DOI: https://doi.org/10.26438/ijcse/v6i5.636640
Consuegra-Ayala, J. P., Gutiérrez, Y., Almeida-Cruz, Y., & Palomar, M. (2022). Intelligent ensembling of autoML system outputs for solving classification problems. Information Sciences, 609, 766–780. https://doi.org/10.1016/j.ins.2022.07.061
DOI: https://doi.org/10.1016/j.ins.2022.07.061
Ecemis, C., Acu, N., & Sari, Z. (2022). Classification of Imbalanced Cardiac Arrhythmia Data. European Journal of Science and Technology, 34, 546-552. https://doi.org/10.31590/ejosat.1083423
DOI: https://doi.org/10.31590/ejosat.1083423
Fang, X., Klawohn, J., De Sabatino, A., Kundnani, H., Ryan, J., Yu, W., & Hajcak, G. (2022). Accurate classification of depression through optimized machine learning models on high-dimensional noisy data. Biomedical Signal Processing and Control, 71(Part B), 103237. https://doi.org/10.1016/j.bspc.2021.103237
DOI: https://doi.org/10.1016/j.bspc.2021.103237
Farhat, N. H. (1992). Photonit neural networks and learning mathines the role of electron-trapping materials. IEEE Expert-Intelligent Systems and Their Applications, 7(5), 63–72. https://doi.org/10.1109/64.163674
DOI: https://doi.org/10.1109/64.163674
Fath, A. H., Madanifar, F., & Abbasi, M. (2020). Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum, 6(1), 80–91. https://doi.org/10.1016/j.petlm.2018.12.002
DOI: https://doi.org/10.1016/j.petlm.2018.12.002
Ganie, S. M., & Malik, M. B. (2022). An Ensemble Machine Learning Approach for Predicting Type-II Diabetes Mellitus based on Lifestyle Indicators. Healthcare Analytics, 2, 100092. https://doi.org/10.1016/j.health.2022.100092
DOI: https://doi.org/10.1016/j.health.2022.100092
Gupta, V., Srinivasan, S., & Kudli, S. S. (2014). Prediction and Classification of Cardiac Arrhythmia. https://cs229.stanford.edu/proj2014/Vasu%20Gupta,%20Sharan%20Srinivasan,%20Sneha%20Kudli,%20Prediction%20and%20Classification%20of%20Cardiac%20Arrhythmia.pdf
Hongle, D., Yan, Z., Lin, Z., Yeh-Cheng, C., Gang, K., & Chen, Y.-C. (2022). Selective Ensemble Learning Algorithm for Imbalanced Dataset. Preprint. https://doi.org/10.21203/rs.3.rs-721493/v1
DOI: https://doi.org/10.21203/rs.3.rs-721493/v1
Jia, J., & Qiu, W. (2020). Research on an ensemble classification algorithm based on differential privacy. IEEE Access, 8, 93499–93513. https://doi.org/10.1109/ACCESS.2020.2995058
DOI: https://doi.org/10.1109/ACCESS.2020.2995058
Kilincer, I. F., Ertam, F., & Sengur, A. (2021). Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks, 188, 107840. https://doi.org/10.1016/j.comnet.2021.107840
DOI: https://doi.org/10.1016/j.comnet.2021.107840
Kushwah, J. S., Kumar, A., Patel, S., Soni, R., Gawande, A., & Gupta, S. (2021). Comparative study of regressor and classifier with decision tree using modern tools. Materials Today: Proceedings, 56(6), 3571-3576. https://doi.org/10.1016/j.matpr.2021.11.635
DOI: https://doi.org/10.1016/j.matpr.2021.11.635
Ma, T. M., Yamamori, K., & Thida, A. (2020). A comparative approach to naïve bayes classifier and support vector machine for email spam classification. 2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020 (pp. 324–326). IEEE. https://doi.org/10.1109/GCCE50665.2020.9291921
DOI: https://doi.org/10.1109/GCCE50665.2020.9291921
Maniruzzaman, M., Jahanur Rahman, M., Ahammed, B., Abedin, M. M., Suri, H. S., Biswas, M., El-Baz, A., Bangeas, P., Tsoulfas, G., & Suri, J. S. (2019). Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine, 176, 173–193. https://doi.org/10.1016/j.cmpb.2019.04.008
DOI: https://doi.org/10.1016/j.cmpb.2019.04.008
Mohamed, A. R. (2017). Comparative Study of Four Supervised Machine Learning Techniques for Classification. International Journal of Applied Science and Technology, 7(2), 5–18.
Nazari, E., Aghemiri, M., Avan, A., Mehrabian, A., & Tabesh, H. (2021). Machine learning approaches for classification of colorectal cancer with and without feature selection method on microarray data. Gene Reports, 25, 101419. https://doi.org/10.1016/j.genrep.2021.101419
DOI: https://doi.org/10.1016/j.genrep.2021.101419
Ngo, G., Beard, R., & Chandra, R. (2022). Evolutionary bagging for ensemble learning. Neurocomputing, 510, 1-14. https://doi.org/10.1016/j.neucom.2022.08.055
DOI: https://doi.org/10.1016/j.neucom.2022.08.055
Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78. https://doi.org/10.26438/ijcse/v6i10.7478
DOI: https://doi.org/10.26438/ijcse/v6i10.7478
Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with their empirical comparison in WEKA. International Journal of Computer Applications, 60(12), 20–25. https://doi.org/10.5120/9744-4304
DOI: https://doi.org/10.5120/9744-4304
Priyanka, & Kumar, D. (2020). Decision tree classifier: A detailed survey. International Journal of Information and Decision Sciences, 12(3), 246–269. https://doi.org/10.1504/ijids.2020.108141
DOI: https://doi.org/10.1504/IJIDS.2020.108141
Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach: global trends, research directions, and regulatory standpoints. Data Science and Management, 4, 19–29. https://doi.org/10.1016/j.dsm.2021.12.002
DOI: https://doi.org/10.1016/j.dsm.2021.12.002
Punyapornwithaya, V., Klaharn, K., Arjkumpa, O., & Sansamur, C. (2022). Exploring the predictive capability of machine learning models in identifying foot and mouth disease outbreak occurrences in cattle farms in an endemic setting of Thailand. Preventive Veterinary Medicine, 207, 105706. https://doi.org/10.1016/J.PREVETMED.2022.105706
DOI: https://doi.org/10.1016/j.prevetmed.2022.105706
Qian, X., Zhou, Z., Hu, J., Zhu, J., Huang, H., & Dai, Y. (2021). A comparative study of kernel-based vector machines with probabilistic outputs for medical diagnosis. Biocybernetics and Biomedical Engineering, 41(4), 1486–1504. https://doi.org/10.1016/j.bbe.2021.09.003
DOI: https://doi.org/10.1016/j.bbe.2021.09.003
Revathi, A., Kaladevi, R., Ramana, K., Jhaveri, R. H., Kumar, M. R., & Kumar, M. S. P. (2022). Early detection of cognitive decline using machine learning algorithm and cognitive ability test. Security and Communication Networks, 2022, 4190023. https://doi.org/10.1155/2022/4190023
DOI: https://doi.org/10.1155/2022/4190023
Rezvani, S., & Wang, X. (2022). Neurocomputing intuitionistic fuzzy twin support vector machines for imbalanced data. Neurocomputing, 507, 16–25. https://doi.org/10.1016/j.neucom.2022.07.083
DOI: https://doi.org/10.1016/j.neucom.2022.07.083
Sevinç, E. (2022). An empowered AdaBoost algorithm implementation: A COVID-19 dataset study. Computers and Industrial Engineering, 165, 107912. https://doi.org/10.1016/j.cie.2021.107912
DOI: https://doi.org/10.1016/j.cie.2021.107912
Shafi, A. S. M., Molla, M. M. I., Jui, J. J., & Rahman, M. M. (2020). Detection of colon cancer based on microarray dataset using machine learning as a feature selection and classification techniques. SN Applied Sciences, 2(7), 1–8. https://doi.org/10.1007/s42452-020-3051-2
DOI: https://doi.org/10.1007/s42452-020-3051-2
Shi, Q., Suganthan, P. N., & Katuwal, R. (2022). Weighting and pruning based ensemble deep random vector functional link network for tabular data classification. arXiv:2201.05809. http://arxiv.org/abs/2201.05809
DOI: https://doi.org/10.1016/j.patcog.2022.108879
Swathy, M., & Saruladha, K. (2021). A comparative study of classification and prediction of cardio-vascular diseases (cvd) using machine learning and deep learning techniques. ICT Express, 8(1), 109-116. https://doi.org/10.1016/j.icte.2021.08.021
DOI: https://doi.org/10.1016/j.icte.2021.08.021
Tewari, S., & Dwivedi, U. D. (2020). A comparative study of heterogeneous ensemble methods for the identification of geological lithofacies. Journal of Petroleum Exploration and Production Technology, 10(5), 1849–1868. https://doi.org/10.1007/s13202-020-00839-y
DOI: https://doi.org/10.1007/s13202-020-00839-y
Thirunavukkarasu, K., Singh, A. S., Rai, P., & Gupta, S. (2018). Classification of IRIS dataset using classification based KNN Algorithm in supervised learning. 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018 (pp. 4–7). IEEE. https://doi.org/10.1109/CCAA.2018.8777643
DOI: https://doi.org/10.1109/CCAA.2018.8777643
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8
DOI: https://doi.org/10.1186/s12911-019-1004-8
Wade, B. S. C., Joshi, S. H., Gutman, B. A., & Thompson, P. M. (2017). Machine learning on high dimensional shape data from subcortical brain surfaces: A comparison of feature selection and classification methods. Pattern Recognition, 63, 731–739. https://doi.org/10.1016/j.patcog.2016.09.034
DOI: https://doi.org/10.1016/j.patcog.2016.09.034
Wei, X., Zou, N., Zeng, L., & Pei, Z. (2022). PolyJet 3D printing: Predicting color by multilayer perceptron neural network. Annals of 3D Printed Medicine, 5, 100049. https://doi.org/10.1016/j.stlm.2022.100049
DOI: https://doi.org/10.1016/j.stlm.2022.100049
Yakut, Ö., & Bolat, E. D. (2022). A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach. Biocybernetics and Biomedical Engineering, 42(2), 667–680. https://doi.org/10.1016/j.bbe.2022.05.004
DOI: https://doi.org/10.1016/j.bbe.2022.05.004
Yogita, B., Akanksha, M., Shefali, A., Tanya, M., & Gresha, B. (2020). Classification of Cardiac Arrhythmia Using Kernelized SVM. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 922-926). IEEE. https://doi.org/10.1109/ICOEI48184.2020.9143000.
DOI: https://doi.org/10.1109/ICOEI48184.2020.9143000