IMPROVING MATERIAL FLOW IN A MODIFIED PRODUCTION SYSTEM
Dariusz Plinta
dplinta@ath.bielsko.plUniversity of Bielsko-Biala (Poland)
https://orcid.org/0000-0002-4638-5319
Katarzyna Radwan
University of Bielsko-Biala (Poland)
Abstract
Material flow management aims to ensure the consistency of supply and reliability of the production processes being carried out. The aim of the article is to present a model of material flow organisation in a changing production system operating under small batch production conditions. Carrying out simulations for various production scenarios will be the basis for developing an effective method of material flow management in small batch production of cutting tools.
Keywords:
modelling and simulation of production processes, material flow, production systemReferences
Allet, J. (2016). Production and Preparation Optimization in Single Production. Chandler-Gilbert Community College.
Google Scholar
Alquraish, M. (2022). Modelling and Simulation of Manufacturing Processes and Systems: Overview of Tools, Challenges, and Future Opportunities. Engineering, Technology & Applied Science Research, 12(6),9779–9786. https://doi.org/10.48084/etasr.5376
DOI: https://doi.org/10.48084/etasr.5376
Google Scholar
Blackstone, J. H. (2016). APICS Dictionary (15th edition). APICS.
Google Scholar
Bozarth, C. B., & Handfield, R. B. (2018). Introduction to Operations and Supply Chain Management (5th edition). Pearson Education.
Google Scholar
Burduk, A., Łapczyńska, D., & Popiel, P. (2021). Simulation modeling in production effectiveness improvement – case study. Management and Production Engineering Review, 12(2), 75–85. https://doi.org/10.24425/mper.2021.137680
Google Scholar
Butrat, A., & Supsomboon, S. (2022). A Plant Simulation approach for optimal resource utilization: A case study in the tire manufacturing industry. Advances in Production Engineering & Management, 17(2), 243–255. https://doi.org/10.14743/apem2022.2.434
DOI: https://doi.org/10.14743/apem2022.2.434
Google Scholar
Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 6(156), 205–212.
Google Scholar
Gola, A. (2019). Reliability analysis of reconfigurable manufacturing structures using computer simulation methods. Eksploatacja i Niezawodność – Maintenance and Reliability, 21(1), 90–102. https://doi.org/10.17531/ein.2019.1.11
DOI: https://doi.org/10.17531/ein.2019.1.11
Google Scholar
Kelton, D. (2014). Simulation with Arena (sixth edition). Mc Graw Hill Education. Kłos, S., & Patalas-Maliszewska, J. (2020). Using the simulation method for modelling a manufacturing system of predictive maintenance. Advances in Intelligent Systems and Computing (vol. 1004, pp. 57–64). Springer. https://doi.org/10.1007/978-3-030-23946-6_7
DOI: https://doi.org/10.1007/978-3-030-23946-6_7
Google Scholar
Knosala, R. (2017). Inżynieria produkcji. Kompendium wiedzy. Polskie Wydawnictwo Ekonomiczne.
Google Scholar
Kolny, D., Kurczyk, D., & Matuszek, J. (2019). Computer support of ergonomic analysis of working conditions at workstations. Applied Computer Science, 15(1), 49–61. https://doi.org/10.23743/acs-2019-04
DOI: https://doi.org/10.35784/acs-2019-04
Google Scholar
Lehocká, D., Hlavatý, I., & Hloch, S. (2016). Rationalization of material flow in production od semitrailer frame for automotive industry. Technical Gazette, 23(4), 163806. https://doi.org/10.17559/TV-20131113100109
DOI: https://doi.org/10.17559/TV-20131113100109
Google Scholar
Litwin, P., Mądziel, M., & Stadnicka, D. (2019). Simulations of Manufacturing Systems: Applications in Achieving the Intended Learning Outcomes. In: L.M. Camarinha-Matos, H.
Google Scholar
Afsarmanesh & D. Antonelli (Eds.), Collaborative Networks and Digital Transformation. PRO-VE 2019. IFIP Advances in Information and Communication Technology (vol. 568, pp. 615–623). Springer. https://doi.org/10.1007/978-3-030-28464-0_54
DOI: https://doi.org/10.1007/978-3-030-28464-0_54
Google Scholar
Maciąg, A., Pietroń, R., & Kukla, S. (2013). Prognozowanie i symulacja w przedsiębiorstwie. Polskie Wydawnictwo Ekonomiczne.
Google Scholar
Małopolski, W. (2012). Modeling and optimization of manufacturing systems using Arena software. Technical Transactions: Mechanics, 109(8-M), 91–108.
Google Scholar
Pająk, E. (2021). Zarządzanie produkcją - produkt, technologia, organizacja. Wydawnictwo Naukowe PWN.
Google Scholar
Pająk, E., Klimkiewicz, M., & Kosieradzka, A. (2014). Zarządzanie produkcją i usługami. Polskie Wydawnictwo Ekonomiczne.
Google Scholar
Plinta, D., & Kłaptocz, K. (2021). Virtual reality in production layout designing. Applied Computer Science, 17(1), 61–69. https://doi.org/10.23743/acs-2021-06
DOI: https://doi.org/10.35784/acs-2021-06
Google Scholar
Silva, V., Ferreira, L., Silva, F., Tjahjono, B., & Ávila, P. (2021). Simulation-Based Decision Support System to Improve Material Flow of a Textile Company. Sustainability, 13(5), 2947. https://doi.org/10.3390/su13052947
DOI: https://doi.org/10.3390/su13052947
Google Scholar
Szatkowski, K. (2014). Nowoczesne zarządzanie produkcją. Ujęcie procesowe. Wydawnictwo Naukowe PWN.
Google Scholar
Szatkowski, K. (2018). Przygotowanie produkcji. Wydawnictwo Naukowe PWN.
Google Scholar
Authors
Dariusz Plintadplinta@ath.bielsko.pl
University of Bielsko-Biala Poland
https://orcid.org/0000-0002-4638-5319
Authors
Katarzyna RadwanUniversity of Bielsko-Biala Poland
Statistics
Abstract views: 261PDF downloads: 142
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Dariusz Plinta, Karolina Kłaptocz, VIRTUAL REALITY IN PRODUCTION LAYOUT DESIGNING , Applied Computer Science: Vol. 17 No. 1 (2021)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
- Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA, HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Grzegorz KŁOSOWSKI, Tomasz KLEPKA, Agnieszka NOWACKA, NEURAL CONTROLLER FOR THE SELECTION OF RECYCLED COMPONENTS IN POLYMER-GYPSY MORTARS , Applied Computer Science: Vol. 14 No. 2 (2018)
- Hakan AYDIN, Ahmet SERTBAŞ, CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Maciej NABOŻNY, ASYNCHRONOUS INFORMATION DISTRIBUTION AND CLUSTER STATE SYNCHRONIZATION , Applied Computer Science: Vol. 14 No. 1 (2018)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN, IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION , Applied Computer Science: Vol. 18 No. 1 (2022)
- Kuba ROSŁANIEC, ANALYSIS OF THE EFFECT OF PROJECTILE IMPACT ANGLE ON THE PUNCTURE OF A STEEL PLATE USING THE FINITE ELEMENT METHOD IN ABAQUS SOFTWARE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Ahmed A.H. HAQQANI, Seenu N, Mukund JANARDHANAN, Kuppan Chetty RM, EVALUATION OF ROBOTIC CLEANING TECHNOLOGIES: PRESERVING A BRITISH ICONIC BUILDING , Applied Computer Science: Vol. 16 No. 2 (2020)
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.