PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
In recent years, the implementation of machine learning applications started to apply in other possible fields, such as economics, especially investment. But, many methods and modeling are used without knowing the most suitable one for predicting particular data. This study aims to find the most suitable model for predicting stock prices using statistical learning with RNN, LSTM, and GRU deep learning methods using stock price data for 4 (four) major banks in Indonesia, namely BRI, BNI, BCA, and Mandiri, from 2013 to 2022. The result showed that the ARIMA Box-Jenkins modeling is unsuitable for predicting BRI, BNI, BCA, and Bank Mandiri stock prices. In comparison, GRU presented the best performance in the case of predicting the stock prices of BRI, BNI, BCA, and Bank Mandiri.
Keywords:
References
Acheampong, P., Agalega, E., & Shibu, A. K. (2014). The effect of financial leverage and market size on stock returns on the ghana stock exchange: Evidence from Selected Stocks in the Manufacturing Sector. International Journal of Financial Research, 5(1), 125-134. https://doi.org/10.5430/ijfr.v5n1p125 DOI: https://doi.org/10.5430/ijfr.v5n1p125
Ahmad, G. I., Singla, J., Ali, A., Reshi, A. A., & Salameh, A. A. (2022). Machine learning techniques for sentiment analysis of code-mixed and switched indian social media text corpus: A comprehensive review.
International Journal of Advanced Computer Science and Applications, 13(2), 455–467. https://doi.org/10.14569/IJACSA.2022.0130254 DOI: https://doi.org/10.14569/IJACSA.2022.0130254
Almalaq, A., & Edwards, G. (2017). A review of deep learning methods applied on load forecasting. Proceedings - 16th IEEE International Conference on Machine Learning and Applications (pp. 511–516). IEEE. https://doi.org/10.1109/ICMLA.2017.0-110 DOI: https://doi.org/10.1109/ICMLA.2017.0-110
Bank Indonesia. (2022). Policy Synergy and Innovation to Maintain Financial System Stability and Support National Economic Growth.
Bhatt, G., Bansal, H., Singh, R., & Agarwal, S. (2020). How much complexity does an RNN architecture need to learn syntax-sensitive dependencies? Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop (pp. 244–254). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-srw.33 DOI: https://doi.org/10.18653/v1/2020.acl-srw.33
Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Mussaddiq, A., & Kim, S. (2020). A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access, 8, 129600–129612. https://doi.org/10.1109/ACCESS.2020.3009819 DOI: https://doi.org/10.1109/ACCESS.2020.3009819
Ding, G., & Qin, L. (2020). Study on the prediction of stock price based on the associated network model of LSTM. International Journal of Machine Learning and Cybernetics, 11(6), 1307–1317. https://doi.org/10.1007/s13042-019-01041-1 DOI: https://doi.org/10.1007/s13042-019-01041-1
Ghenimi, A., Chaibi, H., & Omri, M. A. B. (2021). Liquidity risk determinants: Islamic vs conventional banks. International Journal of Law and Management, 63(1), 65–95. https://doi.org/10.1108/IJLMA-03-2018- DOI: https://doi.org/10.1108/IJLMA-03-2018-0060
Gupta, U., Bhattacharjee, V., & Bishnu, P. S. (2022). StockNet—GRU based stock index prediction. Expert Systems with Applications, 207(March 2021), 117986. https://doi.org/10.1016/j.eswa.2022.117986 DOI: https://doi.org/10.1016/j.eswa.2022.117986
IDX (2023). https://www.idx.co.id/id. Retrieved March, 18 2023.
Jahan, I., & Sajal, S. (2018). Stock price prediction using recurrent neural network (RNN) algorithm on timeseries data. In 2018 Midwest Instruction and Computing Symposium. The College of St Scholastica.
Jarrah, M., & Salim, N. (2019). A recurrent neural network and a discrete wavelet transform to predict the Saudi stock price trends. International Journal of Advanced Computer Science and Applications, 10(4), 155–162. https://doi.org/10.14569/ijacsa.2019.0100418 DOI: https://doi.org/10.14569/IJACSA.2019.0100418
Khan, M., Wang, H., Riaz, A., Elfatyany, A., & Karim, S. (2021). Bidirectional LSTM-RNN-based hybrid deep learning frameworks for univariate time series classification. Journal of Supercomputing, 77(7), 7021– DOI: https://doi.org/10.1007/s11227-020-03560-z
Le, T. H., Chuc, A. T., & Taghizadeh-Hesary, F. (2019). Financial inclusion and its impact on financial efficiency and sustainability: Empirical evidence from Asia. Borsa Istanbul Review, 19(4), 310–322. https://doi.org/10.1016/j.bir.2019.07.002 DOI: https://doi.org/10.1016/j.bir.2019.07.002
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18. https://doi.org/10.3390/e23010018 DOI: https://doi.org/10.3390/e23010018
Ludwig, S. A. (2019). Comparison of Time Series Approaches applied to Greenhouse Gas Analysis: ANFIS, RNN, and LSTM. IEEE International Conference on Fuzzy Systems, (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8859013 DOI: https://doi.org/10.1109/FUZZ-IEEE.2019.8859013
Madge, S., & Bhatt, S. (2015). Predicting Stock Price Direction using Support Vector Machines. https://github.com/SaahilMadge/Spring-2015-IW
Moghar, A., & Hamiche, M. (2020). Stock market prediction using LSTM recurrent neural network. Procedia Computer Science, 170, 1168–1173. https://doi.org/10.1016/j.procs.2020.03.049 DOI: https://doi.org/10.1016/j.procs.2020.03.049
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7 DOI: https://doi.org/10.1186/s40537-014-0007-7
Qin, H. (2019). Comparison of Deep learning models on time series forecasting : a case study of Dissolved Oxygen Prediction. ArXiv, arXiv:1911.08414. http://arxiv.org/abs/1911.08414
Ringmu, H. S., & Oumar, S. B. (2022). Forecasting stock prices in the New York stock exchange. Journal of Economics Bibliography, 9(1), 1–20. https://doi.org/10.1453/jeb.v9i1.2269
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing Journal, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181 DOI: https://doi.org/10.1016/j.asoc.2020.106181
Shahi, T. B., Shrestha, A., Neupane, A., & Guo, W. (2020). Stock price forecasting with deep learning: A comparative study. Mathematics, 8(9), 1–15. https://doi.org/10.3390/math8091441 DOI: https://doi.org/10.3390/math8091441
Shumway, R. H., & Stoffer, D. S. (2019). Time Series: A Data Analysis Approach Using R. CRC Press. DOI: https://doi.org/10.1201/9780429273285
Tembhurne, J. V., & Diwan, T. (2021). Sentiment analysis in textual, visual and multimodal inputs using recurrent neural networks. Multimedia Tools and Applications, 80(5), 6871–6910. https://doi.org/10.1007/s11042-020-10037-x DOI: https://doi.org/10.1007/s11042-020-10037-x
Taud, H., & Mas, J. F. (2018). Multilayer Perceptron (MLP) BT. Geomatic Approaches for Modeling Land Change Scenarios (pp. 451–455). Springer. DOI: https://doi.org/10.1007/978-3-319-60801-3_27
Tsai, Y. T., Zeng, Y. R., & Chang, Y. S. (2018). Air pollution forecasting using rnn with lstm. Proceedings - IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th
International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASCPICom-DataCom-CyberSciTec 2018, (pp. 1068–1073). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178 DOI: https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178
Utomo, D. (2017). Stock price prediction using back propagation neural network based on gradient descent with momentum and adaptive learning rate. Journal of Internet Banking and Commerce, 22(3), 16.
Wei, W. W. S. (2006). Time series analysis: univariate and multivariate methods. Journal of the American Statistical Association, 86(413), 245-246. https://doi.org/10.2307/2289741 DOI: https://doi.org/10.2307/2289741
Wei, X., Zhang, L., Yang, H. Q., Zhang, L., & Yao, Y. P. (2021). Machine learning for pore-water pressure timeseries prediction: Application of recurrent neural networks. Geoscience Frontiers, 12(1), 453–467. https://doi.org/10.1016/j.gsf.2020.04.011 DOI: https://doi.org/10.1016/j.gsf.2020.04.011
Wibowo, J. M. (2020). Lockdown Generation: Pengangguran di Masa COVID-19. Pusat Riset Kependudukan.
Wu, C. H., Lu, C. C., Ma, Y. F., & Lu, R. S. (2019). A new forecasting framework for bitcoin price with LSTM. IEEE International Conference on Data Mining Workshops (pp. 168–175). IEEE. https://doi.org/10.1109/ICDMW.2018.00032 DOI: https://doi.org/10.1109/ICDMW.2018.00032
Yadav, O., Cynara, G., Abhishek, K., & Abhishek, Y. (2019). Inflation prediction model using machine learning. International Journal of Information and Computing Science, 6(5), 121–128.
Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257 DOI: https://doi.org/10.1016/j.procs.2020.03.257
Yang, C., & Guo, S. (2021). Inflation prediction method based on deep learning. Computational Intelligence and Neuroscience, 2021, 1071145. https://doi.org/10.1155/2021/1071145 DOI: https://doi.org/10.1155/2021/1071145
Zainab, M., Usmani, A. R., Mehrban, S., & Hussain, M. (2019). FPGA Based Implementations of RNN and CNN: A Brief Analysis. 3rd International Conference on Innovative Computing (pp. 1-8). IEEE. https://doi.org/10.1109/ICIC48496.2019.8966676 DOI: https://doi.org/10.1109/ICIC48496.2019.8966676
Article Details
Abstract views: 829
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.