CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, we proposed a technique to classify Parkinson’s disease by MRI brain images. Initially, normalize the input data using the min-max normalization method and then remove noise from input images using a median filter. Then utilizing the Binary Dragonfly Algorithm to select the features. Furthermore, to segment the diseased part from MRI brain images using the technique Dense-UNet. Then, classify the disease as if it’s Parkinson’s disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with Enhanced Whale Optimization Algorithm (EWOA) to get better classification accuracy. Here, we use the public Parkinson’s Progression Marker Initiative (PPMI) dataset for Parkinson’s MRI images. The accuracy, sensitivity, specificity, and precision metrics will be utilized with manually gathered data to assess the efficacy of the proposed methodology.
Keywords:
References
Abayomi-Alli, O. O., Damaševičius, R., Maskeliūnas, R., & Abayomi-Alli, A. (2020, September). BiLSTM with data augmentation using interpolation methods to improve early detection of parkinson disease. In 2020 15th Conference on Computer Science and Information Systems (FedCSIS) (pp. 371-380). IEEE. http://doi.org/10.15439/2020F188 DOI: https://doi.org/10.15439/2020F188
Yaman, O., Ertam, F., & Tuncer, T. (2020). Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Medical Hypotheses, 135, 109483. DOI: https://doi.org/10.1016/j.mehy.2019.109483
Pasha, A., & Latha, P. H. (2020). Bio-inspired dimensionality reduction for Parkinson’s disease (PD) classification. Health information science and systems, 8(1), 1-22. DOI: https://doi.org/10.1007/s13755-020-00104-w
Lamba, R., Gulati, T., Alharbi, H. F., & Jain, A. (2022). A hybrid system for Parkinson’s disease diagnosis using machine learning techniques. International Journal of Speech Technology, 25(3), 583-593. DOI: https://doi.org/10.1007/s10772-021-09837-9
Kaplan, E., Altunisik, E., Firat, Y. E., Barua, P. D., Dogan, S., Baygin, M., & Acharya, U. R. (2022). Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images. Computer Methods and Programs in Biomedicine, 224, 107030. DOI: https://doi.org/10.1016/j.cmpb.2022.107030
Senturk, Z. K. (2020). Early diagnosis of Parkinson’s disease using machine learning algorithms. Medical hypotheses, 138, 109603. DOI: https://doi.org/10.1016/j.mehy.2020.109603
Shu, Z., Pang, P., Wu, X., Cui, S., Xu, Y., & Zhang, M. (2020). An integrative nomogram for identifying earlystage Parkinson's disease using non-motor symptoms and white matter-based radiomics biomarkers from whole-brain MRI. Frontiers in aging neuroscience, 12, 457. DOI: https://doi.org/10.3389/fnagi.2020.548616
Mozhdehfarahbakhsh, A., Chitsazian, S., Chakrabarti, P., Chakrabarti, T., Kateb, B., & Nami, M. (2021). An MRI-based deep learning model to predict Parkinson’s disease stages. medRxiv. DOI: https://doi.org/10.1101/2021.02.19.21252081
Griffanti, L., Klein, J. C., Szewczyk-Krolikowski, K., Menke, R. A., Rolinski, M., Barber, T. R., & Mackay, C. (2020). Cohort profile: the Oxford Parkinson’s Disease Centre Discovery Cohort MRI substudy (OPDCMRI). BMJ open, 10(8), e034110. DOI: https://doi.org/10.1136/bmjopen-2019-034110
Chen, Y., Zhu, G., Liu, D., Liu, Y., Yuan, T., Zhang, X., & Zhang, J. (2020). The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation. Journal of the neurological sciences, 411, 116721. DOI: https://doi.org/10.1016/j.jns.2020.116721
Luo, J., & Collingwood, J. F. (2022). Effective R2 relaxation rate, derived from dual-contrast fast-spin-echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson’s disease and healthy individuals. Journal of Neuroscience Methods, 382, 109708. DOI: https://doi.org/10.1016/j.jneumeth.2022.109708
Prema Arokia Mary, G., Suganthi, N., & Hema, M. S. (2021). Early Prediction of Parkinson’s disease from Brain MRI Images Using Convolutional Neural Network. Journal of Medical Imaging and Health Informatics, 11(12), 3103-3109. DOI: https://doi.org/10.1166/jmihi.2021.3897
Hossein‐Tehrani, M. R., Ghaedian, T., Hooshmandi, E., Kalhor, L., Foroughi, A. A., & Ostovan, V. R. (2020). Brain TRODAT‐SPECT Versus MRI Morphometry in Distinguishing Early Mild Parkinson's disease from Other Extrapyramidal Syndromes. Journal of Neuroimaging, 30(5), 683-689. DOI: https://doi.org/10.1111/jon.12740
Fu, T., Klietz, M., Nösel, P., Wegner, F., Schrader, C., Höglinger, G. U., & Ding, X. Q. (2020). Brain Morphological Alterations Are Detected in Early‐Stage Parkinson's disease with MRI Morphometry. Journal of Neuroimaging, 30(6), 786-792. DOI: https://doi.org/10.1111/jon.12769
Porter, E., Roussakis, A. A., Lao-Kaim, N. P., & Piccini, P. (2020). Multimodal dopamine transporter (DAT) imaging and magnetic resonance imaging (MRI) to characterize early Parkinson's disease. Parkinsonism & Related Disorders, 79, 26-33. DOI: https://doi.org/10.1016/j.parkreldis.2020.08.010
Zhang, J., Li, Y., Gao, Y., Hu, J., Huang, B., Rong, S., & Nie, K. (2020). An SBM-based machine learning model for identifying mild cognitive impairment in patients with Parkinson's disease. Journal of the Neurological Sciences, 418, 117077. DOI: https://doi.org/10.1016/j.jns.2020.117077
Solana-Lavalle, G., & Rosas-Romero, R. (2021). Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Computer Methods and Programs in Biomedicine, 198, 105793. DOI: https://doi.org/10.1016/j.cmpb.2020.105793
Balaji, E., Brindha, D., & Balakrishnan, R. (2020). Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Applied Soft Computing, 94, 106494. DOI: https://doi.org/10.1016/j.asoc.2020.106494
Sivaranjini, S., & Sujatha, C. M. (2020). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia tools and applications, 79(21), 15467-15479. DOI: https://doi.org/10.1007/s11042-019-7469-8
Nagasubramanian, G., & Sankayya, M. (2021). Multi-variate vocal data analysis for detection of Parkinson disease using deep learning. Neural Computing and Applications, 33(10), 4849-4864. DOI: https://doi.org/10.1007/s00521-020-05233-7
Caliskan, A., Badem, H., Basturk, A., & YUKSEL, M. (2017). Diagnosis of the parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering, 17(2), 3311-3318.
Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204. DOI: https://doi.org/10.1016/j.knosys.2018.08.003
Xin, J., Zhang, X., Zhang, Z., & Fang, W. (2019). Road extraction of high-resolution remote sensing images derived from DenseUNet. Remote Sensing, 11(21), 2499. DOI: https://doi.org/10.3390/rs11212499
Feng, Z., Cai, A., Wang, Y., Li, L., Tong, L., & Yan, B. (2021). Dual residual convolutional neural network (DRCNN) for low-dose CT imaging. Journal of X-Ray Science and Technology, 29(1), 91-109. DOI: https://doi.org/10.3233/XST-200777
Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153, 107086 DOI: https://doi.org/10.1016/j.cie.2020.107086
Article Details
Abstract views: 832
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
