Abayomi-Alli, O. O., Damaševičius, R., Maskeliūnas, R., & Abayomi-Alli, A. (2020, September). BiLSTM with data augmentation using interpolation methods to improve early detection of parkinson disease. In 2020 15th Conference on Computer Science and Information Systems (FedCSIS) (pp. 371-380). IEEE. http://doi.org/10.15439/2020F188
DOI: https://doi.org/10.15439/2020F188
Yaman, O., Ertam, F., & Tuncer, T. (2020). Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Medical Hypotheses, 135, 109483.
DOI: https://doi.org/10.1016/j.mehy.2019.109483
Pasha, A., & Latha, P. H. (2020). Bio-inspired dimensionality reduction for Parkinson’s disease (PD) classification. Health information science and systems, 8(1), 1-22.
DOI: https://doi.org/10.1007/s13755-020-00104-w
Lamba, R., Gulati, T., Alharbi, H. F., & Jain, A. (2022). A hybrid system for Parkinson’s disease diagnosis using machine learning techniques. International Journal of Speech Technology, 25(3), 583-593.
DOI: https://doi.org/10.1007/s10772-021-09837-9
Kaplan, E., Altunisik, E., Firat, Y. E., Barua, P. D., Dogan, S., Baygin, M., & Acharya, U. R. (2022). Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images. Computer Methods and Programs in Biomedicine, 224, 107030.
DOI: https://doi.org/10.1016/j.cmpb.2022.107030
Senturk, Z. K. (2020). Early diagnosis of Parkinson’s disease using machine learning algorithms. Medical hypotheses, 138, 109603.
DOI: https://doi.org/10.1016/j.mehy.2020.109603
Shu, Z., Pang, P., Wu, X., Cui, S., Xu, Y., & Zhang, M. (2020). An integrative nomogram for identifying earlystage Parkinson's disease using non-motor symptoms and white matter-based radiomics biomarkers from whole-brain MRI. Frontiers in aging neuroscience, 12, 457.
DOI: https://doi.org/10.3389/fnagi.2020.548616
Mozhdehfarahbakhsh, A., Chitsazian, S., Chakrabarti, P., Chakrabarti, T., Kateb, B., & Nami, M. (2021). An MRI-based deep learning model to predict Parkinson’s disease stages. medRxiv.
DOI: https://doi.org/10.1101/2021.02.19.21252081
Griffanti, L., Klein, J. C., Szewczyk-Krolikowski, K., Menke, R. A., Rolinski, M., Barber, T. R., & Mackay, C. (2020). Cohort profile: the Oxford Parkinson’s Disease Centre Discovery Cohort MRI substudy (OPDCMRI). BMJ open, 10(8), e034110.
DOI: https://doi.org/10.1136/bmjopen-2019-034110
Chen, Y., Zhu, G., Liu, D., Liu, Y., Yuan, T., Zhang, X., & Zhang, J. (2020). The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation. Journal of the neurological sciences, 411, 116721.
DOI: https://doi.org/10.1016/j.jns.2020.116721
Luo, J., & Collingwood, J. F. (2022). Effective R2 relaxation rate, derived from dual-contrast fast-spin-echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson’s disease and healthy individuals. Journal of Neuroscience Methods, 382, 109708.
DOI: https://doi.org/10.1016/j.jneumeth.2022.109708
Prema Arokia Mary, G., Suganthi, N., & Hema, M. S. (2021). Early Prediction of Parkinson’s disease from Brain MRI Images Using Convolutional Neural Network. Journal of Medical Imaging and Health Informatics, 11(12), 3103-3109.
DOI: https://doi.org/10.1166/jmihi.2021.3897
Hossein‐Tehrani, M. R., Ghaedian, T., Hooshmandi, E., Kalhor, L., Foroughi, A. A., & Ostovan, V. R. (2020). Brain TRODAT‐SPECT Versus MRI Morphometry in Distinguishing Early Mild Parkinson's disease from Other Extrapyramidal Syndromes. Journal of Neuroimaging, 30(5), 683-689.
DOI: https://doi.org/10.1111/jon.12740
Fu, T., Klietz, M., Nösel, P., Wegner, F., Schrader, C., Höglinger, G. U., & Ding, X. Q. (2020). Brain Morphological Alterations Are Detected in Early‐Stage Parkinson's disease with MRI Morphometry. Journal of Neuroimaging, 30(6), 786-792.
DOI: https://doi.org/10.1111/jon.12769
Porter, E., Roussakis, A. A., Lao-Kaim, N. P., & Piccini, P. (2020). Multimodal dopamine transporter (DAT) imaging and magnetic resonance imaging (MRI) to characterize early Parkinson's disease. Parkinsonism & Related Disorders, 79, 26-33.
DOI: https://doi.org/10.1016/j.parkreldis.2020.08.010
Zhang, J., Li, Y., Gao, Y., Hu, J., Huang, B., Rong, S., & Nie, K. (2020). An SBM-based machine learning model for identifying mild cognitive impairment in patients with Parkinson's disease. Journal of the Neurological Sciences, 418, 117077.
DOI: https://doi.org/10.1016/j.jns.2020.117077
Solana-Lavalle, G., & Rosas-Romero, R. (2021). Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Computer Methods and Programs in Biomedicine, 198, 105793.
DOI: https://doi.org/10.1016/j.cmpb.2020.105793
Balaji, E., Brindha, D., & Balakrishnan, R. (2020). Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Applied Soft Computing, 94, 106494.
DOI: https://doi.org/10.1016/j.asoc.2020.106494
Sivaranjini, S., & Sujatha, C. M. (2020). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia tools and applications, 79(21), 15467-15479.
DOI: https://doi.org/10.1007/s11042-019-7469-8
Nagasubramanian, G., & Sankayya, M. (2021). Multi-variate vocal data analysis for detection of Parkinson disease using deep learning. Neural Computing and Applications, 33(10), 4849-4864.
DOI: https://doi.org/10.1007/s00521-020-05233-7
Caliskan, A., Badem, H., Basturk, A., & YUKSEL, M. (2017). Diagnosis of the parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering, 17(2), 3311-3318.
Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204.
DOI: https://doi.org/10.1016/j.knosys.2018.08.003
Xin, J., Zhang, X., Zhang, Z., & Fang, W. (2019). Road extraction of high-resolution remote sensing images derived from DenseUNet. Remote Sensing, 11(21), 2499.
DOI: https://doi.org/10.3390/rs11212499
Feng, Z., Cai, A., Wang, Y., Li, L., Tong, L., & Yan, B. (2021). Dual residual convolutional neural network (DRCNN) for low-dose CT imaging. Journal of X-Ray Science and Technology, 29(1), 91-109.
DOI: https://doi.org/10.3233/XST-200777
Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153, 107086
DOI: https://doi.org/10.1016/j.cie.2020.107086