MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK

Qingyu Liu

liuq@students.national-u.edu.ph
National University (Philippines)
https://orcid.org/0009-0000-9774-808X

Roben A. Juanatas


National University (Philippines)

Abstract

Face recognition technology has been widely used in all aspects of people's lives. However, the accuracy of face recognition is greatly reduced due to the obscuring of objects, such as masks and sunglasses. Wearing masks in public has been a crucial approach to preventing illness, especially since the Covid-19 outbreak. This poses challenges to applications such as face recognition. Therefore, the removal of masks via image inpainting has become a hot topic in the field of computer vision. Deep learning-based image inpainting techniques have taken observable results, but the restored images still have problems such as blurring and inconsistency. To address such problems, this paper proposes an improved inpainting model based on generative adversarial network: the model adds attention mechanisms to the sampling module based on pix2pix network; the residual module is improved by adding convolutional branches. The improved inpainting model can not only effectively restore faces obscured by face masks, but also realize the inpainting of randomly obscured images of human faces. To further validate the generality of the inpainting model, tests are conducted on the datasets of CelebA, Paris Street and Place2, and the experimental results show that both SSIM and PSNR have improved significantly.


Keywords:

face inpainting;, generative adversarial network;, residual network;, attention mechanism

Ding, D., Ram, S., & Rodriguez, J. J. (2019). Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering. IEEE Transactions on Image Processing, 28(4), 1705–1719. https://doi.org/10.1109/TIP.2018.2880681
DOI: https://doi.org/10.1109/TIP.2018.2880681   Google Scholar

Goodfellow, I. (2014). NIPS 2014 Tutorial: Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1701.00160
  Google Scholar

He, L., Qiang, Z., Shao, X., Lin, H., Wang, M., & Dai, F. (2022). Research on High-Resolution Face Image Inpainting Method Based on StyleGAN. Electronics, 11(10), 1620. https://doi.org/10.3390/electronics11101620
DOI: https://doi.org/10.3390/electronics11101620   Google Scholar

Hore, A., & Ziou, D. (2010). Image Quality Metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition (pp. 2366–2369). IEEE. https://doi.org/10.1109/ICPR.2010.579
DOI: https://doi.org/10.1109/ICPR.2010.579   Google Scholar

Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Transactions on Graphics, 36(4), 1–14. https://doi.org/10.1145/3072959.3073659
DOI: https://doi.org/10.1145/3072959.3073659   Google Scholar

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Imavolge-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5967–5976). IEEE. https://doi.org/10.1109/CVPR.2017.632
DOI: https://doi.org/10.1109/CVPR.2017.632   Google Scholar

Jaderberg, M., Simonyan, K., & Zisserman, A. (2016). Spatial Transformer Networks. arXiv. https://doi.org/10.48550/arXiv.1506.02025
  Google Scholar

Jiang, Y., Yang, F., Bian, Z., Lu, C., & Xia, S. (2022). Mask removal: Face inpainting via attributes. Multimedia Tools and Applications, 81(21), 29785–29797. https://doi.org/10.1007/s11042-022-12912-1
DOI: https://doi.org/10.1007/s11042-022-12912-1   Google Scholar

Jia, J., & Tang, Ch.-K. (2003). Image repairing: Robust image synthesis by adaptive ND tensor voting. 2003 IEEE Computer Society Conference on Computer Vision springe and Pattern Recognition, 2003. Proceedings. (pp. I-I). IEEE. https://doi.org/10.1109/CVPR.2003.1211414
DOI: https://doi.org/10.1109/CVPR.2003.1211414   Google Scholar

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 105–114). IEEE. https://doi.org/10.1109/CVPR.2017.19
DOI: https://doi.org/10.1109/CVPR.2017.19   Google Scholar

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., & Catanzaro, B. (2018). Image Inpainting for Irregular Holes Using Partial Convolutions. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (vol. 11215, pp. 89–105). Springer. https://doi.org/10.1007/978-3-030-01252-6_6
DOI: https://doi.org/10.1007/978-3-030-01252-6_6   Google Scholar

Mou, C., Wang, Q., & Zhang, J. (2022). Deep Generalized Unfolding Networks for Image Restoration. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 17378–17389). IEEE. https://doi.org/10.1109/CVPR52688.2022.01688
DOI: https://doi.org/10.1109/CVPR52688.2022.01688   Google Scholar

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context Encoders: Feature Learning by Inpainting. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2536–2544). IEEE. https://doi.org/10.1109/CVPR.2016.278
DOI: https://doi.org/10.1109/CVPR.2016.278   Google Scholar

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv. https://doi.org/10.48550/arXiv.1505.04597
DOI: https://doi.org/10.1007/978-3-319-24574-4_28   Google Scholar

Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F.
DOI: https://doi.org/10.1016/0167-2789(92)90242-F   Google Scholar

Sagong, M., Shin, Y., Kim, S., Park, S., & Ko, S. (2019). PEPSI: Fast Image Inpainting With Parallel Decoding Network. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 11352–11360). IEEE. https://doi.org/10.1109/CVPR.2019.01162
DOI: https://doi.org/10.1109/CVPR.2019.01162   Google Scholar

Shao, X., Qiang, Z., Dai, F., He, L., & Lin, H. (2022). Face Image Completion Based on GAN Prior. Electronics, 11(13), 1997. https://doi.org/10.3390/electronics11131997
DOI: https://doi.org/10.3390/electronics11131997   Google Scholar

Simakov, D., Caspi, Y., Shechtman, E., & Irani, M. (2008). Summarizing visual data using bidirectional similarity. 2008 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (pp. 1–8). IEEE. https://doi.org/10.1109/CVPR.2008.4587842
DOI: https://doi.org/10.1109/CVPR.2008.4587842   Google Scholar

Wang, Y., Tao, X., Qi, X., Shen, X., & Jia, J. (2018). Image Inpainting via Generative Multi-column Convolutional Neural Networks. arXiv. https://doi.org/10.48550/arXiv.1810.08771
  Google Scholar

Wu, H., Zhou, J., & Li, Y. (2020). Deep Generative Model for Image Inpainting with Local Binary Pattern Learning and Spatial Attention. arXiv. https://doi.org/10.48550/arXiv.2009.01031
  Google Scholar

Xie, C., Liu, S., Li, C., Cheng, M.-M., Zuo, W., Liu, X., Wen, S., & Ding, E. (2019). Image Inpainting With Learnable Bidirectional Attention Maps. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (pp. 8857–8866). IEEE. https://doi.org/10.1109/ICCV.2019.00895
DOI: https://doi.org/10.1109/ICCV.2019.00895   Google Scholar

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2019). Free-Form Image Inpainting With Gated Convolution. arXiv. https://doi.org/10.48550/arXiv.1806.03589
DOI: https://doi.org/10.1109/ICCV.2019.00457   Google Scholar

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018). Generative Image Inpainting With Contextual Attention. arXiv. https://doi.org/10.48550/arXiv.1801.07892
DOI: https://doi.org/10.1109/CVPR.2018.00577   Google Scholar

Zeng, Y., Fu, J., Chao, H.. & Guo, B. (2019). Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) ( pp.1486–1494). IEEE. https://doi.org/10.1109/CVPR.2019.00158
DOI: https://doi.org/10.1109/CVPR.2019.00158   Google Scholar

Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y. (2018). Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (vol. 11211, pp. 294–310). Springer. https://doi.org/10.1007/978-3-030-01234-2_18
DOI: https://doi.org/10.1007/978-3-030-01234-2_18   Google Scholar

Zheng, C., Cham, T.-J., & Cai, J. (2019). Pluralistic Image Completion. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1438–1447). IEEE. https://doi.org/10.1109/CVPR.2019.00153
DOI: https://doi.org/10.1109/CVPR.2019.00153   Google Scholar

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv. http://arxiv.org/abs/1807.10165
DOI: https://doi.org/10.1007/978-3-030-00889-5_1   Google Scholar

Download


Published
2023-06-30

Cited by

Liu, Q., & Juanatas, R. A. . (2023). MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK. Applied Computer Science, 19(2), 25–42. https://doi.org/10.35784/acs-2023-12

Authors

Qingyu Liu 
liuq@students.national-u.edu.ph
National University Philippines
https://orcid.org/0009-0000-9774-808X

Authors

Roben A. Juanatas 

National University Philippines

Statistics

Abstract views: 278
PDF downloads: 190


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.