Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.
DOI: https://doi.org/10.1016/B978-075067531-4/50006-3
Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research,4(1), 23-45.
DOI: https://doi.org/10.1080/21693277.2016.1192517
Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering,137, 106024. http://doi.org/10.1016/j.cie.2019.106024
DOI: https://doi.org/10.1016/j.cie.2019.106024
Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences,11(6), 2546. http://doi.org/10.3390/app11062546
DOI: https://doi.org/10.3390/app11062546
Yeh, C. H., Lin, M. H., Lin, C. H., Yu, C. E., & Chen, M. J. (2019). Machine learning for long cycle maintenance prediction of wind turbine. Sensors,19(7), 1671. http://doi.org/10.3390/s19071671
DOI: https://doi.org/10.3390/s19071671
Traini, E., Bruno, G., D’antonio, G., & Lombardi, F. (2019). Machine learning framework for predictive maintenance in milling. IFAC-PapersOnLine, 52(13), 177-182. http://doi.org/10.1016/j.ifacol.2019.11.172
DOI: https://doi.org/10.1016/j.ifacol.2019.11.172
Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207.
DOI: https://doi.org/10.1177/1687814020919207
Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262.
DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.006
Lai, S. T., & Leu, F. Y. (2017). Data preprocessing quality management procedure for improving big data applications efficiency and practicality. In Advances on Broad-Band Wireless Computing, Communication and Applications: Proceedings of the 11th International Conference On Broad-Band Wireless Computing, Communication and Applications (BWCCA–2016) November 5–7, 2016, Korea (pp. 731-738). Springer International Publishing. https://doi.org/10.1007/978-3-319-49106-6_73
DOI: https://doi.org/10.1007/978-3-319-49106-6_73
Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability,14(6), 3387.
DOI: https://doi.org/10.3390/su14063387
Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational intelligence, 20(1), 18-36.
DOI: https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
Rendon, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutierrez, E. E. (2020). Data sampling methods to deal with the big data multi-class imbalance problem. Applied Sciences, 10(4), 1276. http://doi.org/10.3390/app10041276
DOI: https://doi.org/10.3390/app10041276
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority oversampling technique. Journal of artificial intelligence research, 16, 321-357
DOI: https://doi.org/10.1613/jair.953
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
Kotsiantis, S. B., & Pintelas, P. E. (2003). Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics,1(1), 46-55.
Elhassan, T., & Aljurf, M. (2016). Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method. Global J Technol Optim S, 1, 2016.
DOI: https://doi.org/10.21767/2472-1956.100011
Zhu, Y., Jia, C., Li, F., & Song, J. (2020). Inspector: a lysine succinylation predictor based on edited nearestneighbor undersampling and adaptive synthetic oversampling. Analytical biochemistry, 593, 113592. http://doi.org/10.1016/j.ab.2020.11359
DOI: https://doi.org/10.1016/j.ab.2020.113592
Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003, December). Balancing training data for automated annotation of keywords: a case study. In WOB (pp. 10-18).
Wang, Z. H. E., Wu, C., Zheng, K., Niu, X., & Wang, X. (2019). SMOTETomek-based resampling for personality recognition. Ieee Access,7, 129678-129689. http://doi.org/10.1109/ACCESS.2019.2940061
DOI: https://doi.org/10.1109/ACCESS.2019.2940061
Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and software Technology, 67, 108-127.
DOI: https://doi.org/10.1016/j.infsof.2015.07.004
Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). Ieee. http://doi.org/10.1109/MIPRO.2015.7160458
DOI: https://doi.org/10.1109/MIPRO.2015.7160458
Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media.
DOI: https://doi.org/10.1007/978-1-4615-5725-8
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
DOI: https://doi.org/10.1016/j.compeleceng.2013.11.024
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. http://doi.org/10.1016/j.csda.2019.106839
DOI: https://doi.org/10.1016/j.csda.2019.106839
Huljanah, M., Rustam, Z., Utama, S., & Siswantining, T. (2019, June). Feature selection using random forest classifier for predicting prostate cancer. In IOP Conference Series: Materials Science and Engineering (Vol. 546, No. 5, p. 052031). IOP Publishing. http://doi.org/10.1088/1757-899X/546/5/052031
DOI: https://doi.org/10.1088/1757-899X/546/5/052031
Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P. R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536.. http://doi.org/10.1016/j.cie.2020.106536
DOI: https://doi.org/10.1016/j.cie.2020.106536
Wang, J., Li, C., Han, S., Sarkar, S., & Zhou, X. (2017). Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development, 61(1), 11-121. http://doi.org/10.1147/jrd.2017.2648298
DOI: https://doi.org/10.1147/JRD.2017.2648298
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. http://doi.org/10.1023/A:1010933404324 Hasan, M. A. M., Nasser, M., Ahmad, S., & Molla, K. I. (2016). Feature selection for intrusion detection using random forest. Journal of information security, 7(3), 129-140. http://doi.org/10.4236/jis.2016.73009
DOI: https://doi.org/10.4236/jis.2016.73009
Themistocleous, M., Papadaki, M., & Kamal, M. M. (Eds.). (2020). Information Systems: 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25–26, 2020, Proceedings (Vol. 402). Springer Nature. http://doi.org/10.1007/978-3-030-63396-7
DOI: https://doi.org/10.1007/978-3-030-63396-7
Granitto, P. M., Furlanello, C., Biasioli, F., & Gasperi, F. (2006). Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and intelligent laboratory systems, 83(2), 83-90. http://doi.org/10.1016/j.chemolab.2006.01.00
DOI: https://doi.org/10.1016/j.chemolab.2006.01.007
Ambarwati, Y. S., & Uyun, S. (2020, December). Feature selection on magelang duck egg candling image using variance threshold method. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 694-699). IEEE. http://doi.org/10.1109/isriti51436.2020.9315486
DOI: https://doi.org/10.1109/ISRITI51436.2020.9315486
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999.
DOI: https://doi.org/10.1109/72.788640
Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision support systems, 50(2), 491-500.
DOI: https://doi.org/10.1016/j.dss.2010.11.006
Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 37(4), 543-558.
DOI: https://doi.org/10.1016/S0167-9236(03)00086-1
Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nuclear Engineering and Technology, 52(7), 1436-1442. http://doi.org/10.1016/j.net.2019.12.029
DOI: https://doi.org/10.1016/j.net.2019.12.029
Singla, M., & Shukla, K. K. (2020). Robust statistics-based support vector machine and its variants: a survey. Neural Computing and Applications, 32(15), 11173-11194.http://doi.org/10.1007/s00521-019- 04627-6
DOI: https://doi.org/10.1007/s00521-019-04627-6
https://www.kaggle.com/datasets/nafisur/dataset-for-predictive-maintenance.
Tarik, M., & Jebari, K. (2020). Maintenance Prediction by Machine Learning: Study Review of Some Supervised Learning Algorithms. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management. Harare, Zimbabwe: IEOM Society International