NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Intelligent mobile robots must possess the ability to navigate in complex environments. The field of mobile robot navigation is continuously evolving, with various technologies being developed. Deep learning has gained attention from researchers, and numerous navigation models utilizing deep learning have been proposed. In this study, the YOLOv5 model is utilized to identify objects to aid the mobile robot in determining movement conditions. However, the limitation of deep learning models being trained on insufficient data, leading to inaccurate recognition in unforeseen scenarios, is addressed by introducing an innovative computer vision technology that detects lanes in real-time. Combining the deep learning model with computer vision technology, the robot can identify different types of objects, allowing it to estimate distance and adjust speed accordingly. Additionally, the paper investigates the recognition reliability in varying light intensities. The findings of this study offer promising directions for future breakthroughs in mobile robot navigation
Keywords:
References
Al Khatib, E. I., Jaradat, M. A. K., & Abdel-Hafez, M. F. (2020). Low-cost reduced navigation system for mobile robot in indoor/outdoor environments. IEEE Access, 8, 25014-25026. https://doi.org/10.1109/ACCESS.2020.2971169.
Altuntaş, N., Imal, E., Emanet, N., & Öztürk, C. N. (2016). Reinforcement learning-based mobile robot navigation. Turkish Journal of Electrical Engineering and Computer Sciences, 24(3), 1747-1767. https://doi.org/10.3906/elk-1311-129.
Amari, S. I. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5), 185-196.
Bui, T. L., Nguyen, T. H., & Nguyen, X. T. (2023). A Controller for Delta Parallel Robot Based on Hedge Algebras Method. Journal of Robotics, 2023. https://doi.org/10.1016/0925-2312(93)90006-O.
Chen, C. H., Lin, C. J., Jeng, S. Y., Lin, H. Y., & Yu, C. Y. (2021). Using ultrasonic sensors and a knowledge-based neural fuzzy controller for mobile robot navigation control. Electronics, 10(4), 466. https://doi.org/10.3390/electronics10040466.
Cho, J. H., Song, W., Choi, H., & Kim, T. (2017). Hole filling method for depth image based rendering based on boundary decision. IEEE Signal Processing Letters, 24(3), 329-333. https://doi.org/10.1109/LSP.2017.2661319.
Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107, 3-11. https://doi.org/10.1016/j.neunet.2017.12.012.
Geng, H., Liu, H., Wang, B., & Sun, F. (2018). Reinforcement extreme learning machine for mobile robot navigation. In Proceedings of ELM-2016 (pp. 61-73). https://doi.org/10.1007/978-3-319-57421-9_6.
Gharajeh, M. S., & Jond, H. B. (2020). Hybrid global positioning system-adaptive neuro-fuzzy inference system based autonomous mobile robot navigation. Robotics and Autonomous Systems, 134, 103669. https://doi.org/10.1016/j.robot.2020.103669.
Hichri, B., Gallala, A., Giovannini, F., & Kedziora, S. (2022). Mobile robots path planning and mobile multirobots control: A review. Robotica, 1-14. https://doi.org/10.1017/S0263574722000893.
Hu, M., Wei, Y., Li, M., Yao, H., Deng, W., Tong, M., & Liu, Q. (2022). Bimodal learning engagement recognition from videos in the classroom. Sensors, 22(16), 5932. https://doi.org/10.3390/s22165932.
Iqbal, J., Xu, R., Sun, S., & Li, C. (2020). Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation. Robotics, 9(2), 46. https://doi.org/10.3390/robotics9020046.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
https://doi.org/10.48550/arXiv.1412.6980.
Lagaza, K. P., Kashyap, A. K., & Pandey, A. (2020). Spider monkey optimization algorithm based collision-free navigation and path optimization for a mobile robot in the static environment. In Advances in Mechanical Engineering: Select Proceedings of ICRIDME 2018 (pp. 1459-1473). https://doi.org/10.1007/978-981-15-0124-1_128.
Lin, H., & Yang, J. (2022). Ensemble cross‐stage partial attention network for image classification. IET Image Processing, 16(1), 102-112. https://doi.org/10.1049/ipr2.12335.
Liu, B., Xiao, X., & Stone, P. (2021). A lifelong learning approach to mobile robot navigation. IEEE Robotics and Automation Letters, 6(2), 1090-1096. https://doi.org/10.1109/LRA.2021.3056373.
Liu, Y., Gao, J., Liu, D., & Wang, Z. (2010, October). The design of control system and study on control algorithm of laser navigation mobile robot. In 2010 3rd International Congress on Image and Signal Processing (Vol. 9, pp. 4276-4280). https://doi.org/10.1109/CISP.2010.5647424
Liu, Y., Li, Z., Zhang, T., & Zhao, S. (2018). Brain–robot interface-based navigation control of a mobile robot in corridor environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(8), 3047-3058. https://doi.org/10.1109/TSMC.2018.2833857.
Lulio, L. C., Tronco, M. L., & Porto, A. J. (2009, December). JSEG-based image segmentation in computer vision for agricultural mobile robot navigation. In 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation-(CIRA) (pp. 240-245). https://doi.org/10.1109/CIRA.2009.5423201.
Luo, S., Yu, J., Xi, Y., & Liao, X. (2022). Aircraft target detection in remote sensing images based on improved YOLOv5. IEEE Access, 10, 5184-5192. https://doi.org/10.1109/ACCESS.2022.3140876.
Mourgias-Alexandris, G., Tsakyridis, A., Passalis, N., Tefas, A., Vyrsokinos, K., & Pleros, N. (2019). An all-optical neuron with sigmoid activation function. Optics Express, 27(7), 9620-9630. https://doi.org/10.1364/OE.27.009620.
Nguyen, A. T., & Vu, C. T. (2022). Obstacle Avoidance for Autonomous Mobile Robots Based on Mapping Method. In Proceedings of the International Conference on Advanced Mechanical Engineering, Automation, and Sustainable Development 2021 (AMAS2021) (pp. 810-816). https://doi.org/10.1007/978-3-030-99666-6_118.
Ran, T., Yuan, L., & Zhang, J. B. (2021). Scene perception based visual navigation of mobile robot in indoor environment. ISA transactions, 109, 389-400. https://doi.org/10.1016/j.isatra.2020.10.023.
Saidi, Y., Nemra, A., & Tadjine, M. (2020). Robust mobile robot navigation using fuzzy type 2 with wheel slip dynamic modeling and parameters uncertainties. International Journal of Modelling and Simulation, 40(6), 397-420. https://doi.org/10.1080/02286203.2019.1646480.
Singh, P., Agrawal, P., Nandanwar, A., Behera, L., Verma, N. K., Nahavandi, S., & Jamshidi, M. (2020). Multivariable event-triggered generalized super-twisting controller for safe navigation of nonholonomic mobile robot. IEEE Systems Journal, 15(1), 454-465. https://doi.org/10.1109/JSYST.2020.2985730.
Wang, D., Hu, Y., & Ma, T. (2020). Mobile robot navigation with the combination of supervised learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems Research, 59, 1-14. https://doi.org/10.1016/j.cogsys.2019.09.006.
Wang, H., Zhang, F., & Wang, L. (2020). Fruit classification model based on improved Darknet53 convolutional neural network. In 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (pp. 881-884). https://doi.org/10.1109/ICITBS49701.2020.00194.
Wang, X., Mizukami, Y., Tada, M., & Matsuno, F. (2021). Navigation of a mobile robot in a dynamic environment using a point cloud map. Artificial Life and Robotics, 26, 10-20. https://doi.org/10.1007/s10015-020-00617-3.
Zhou, L., Rao, X., Li, Y., Zuo, X., Qiao, B., & Lin, Y. (2022). A lightweight object detection method in aerial images based on dense feature fusion path aggregation network. ISPRS International Journal of Geo-Information, 11(3), 189. https://doi.org/10.3390/ijgi11030189.
Article Details
Abstract views: 673
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
