Abuqaddom, I., Mahafzah, B. A., & Faris, H. (2021). Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients. Knowledge-Based Systems, 230, 107391. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107391
DOI: https://doi.org/10.1016/j.knosys.2021.107391
Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303
DOI: https://doi.org/10.1016/j.agwat.2020.106303
Chen, W., Yang, B., Li, J., & Wang, J. (2020). An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access, (vol. 8, pp. 178552–178562). IEEE. https://doi.org/10.1109/ACCESS.2020.3027794
DOI: https://doi.org/10.1109/ACCESS.2020.3027794
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1800–1807). IEEE. https://doi.org/10.1109/CVPR.2017.195
DOI: https://doi.org/10.1109/CVPR.2017.195
Desiani, A., Adrezo, M., Chika Marselina, N., Arhami, M., Salsabila, A., & Gibran Al-Filambany, M. (2022). A combination of image enhancement and U-Net architecture for segmentation in identifying brain tumors on CT-SCAN Images. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), (pp. 423–428). IEEE. https://doi.org/10.1109/ICIMCIS56303.2022.10017519
DOI: https://doi.org/10.1109/ICIMCIS56303.2022.10017519
Desiani, A., Erwin, Maiyanti, S. I., Suprihatin, B., Rachmatullah, N., Fauza, A. N., & Ramayanti, I. (2022). Rpeak detection of beat segmentation and convolution neural network for arrhythmia classification. Journal of Engineering Science and Technology (JESTEC), 17(2), 1231–1246.
Desiani, A., Erwin, Suprihatin, B., Adrezo, M., & Alfan, A. M. (2021). A hybrid system for enhancement retinal image reduction. 2021 International Conference on Informatics, Multimedia, Cyber, and Information System, (ICIMCIS), (pp. 80–85). IEEE. https://doi.org/10.1109/ICIMCIS53775.2021.9699259
DOI: https://doi.org/10.1109/ICIMCIS53775.2021.9699259
Desiani, A., Erwin, Suprihatin, B., Efriliyanti, F., Arhami, M., & Setyaningsih, E. (2022). VG-DropDNet a robust architecture for blood vessels segmentation on retinal image. IEEE Access, (vol. 10, pp. 92067- 92083). IEEE. https://doi.org/10.1109/access.2022.3202890
DOI: https://doi.org/10.1109/ACCESS.2022.3202890
Desiani, A., Erwin, Suprihatin, B., Yahdin, S., Putri, A. I., & Husein, F. R. (2021). Bi-path Architecture of CNN Segmentation and classification method for cervical cancer disorders based on pap-smear images. IAENG International Journal of Computer Science, 48(3), 37.
Erwin, Safmi, A., Desiani, A., Suprihatin, B., & Fathoni. (2022). The augmentation data of retina image for blood vessel segmentation using U-Net convolutional neural network method. International Journal of Computational Intelligence and Applications, 21(01), 2250004. https://doi.org/10.1142/S1469026822500043
DOI: https://doi.org/10.1142/S1469026822500043
Hamwood, J., Alonso-Caneiro, D., Read, S. A., Vincent, S. J., & Collins, M. J. (2018). Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomedical Optics Express, 9(7), 3049–3066. https://doi.org/10.1364/boe.9.003049
DOI: https://doi.org/10.1364/BOE.9.003049
Hamzah, Diqi, M., & Ronaldo, A. D. (2021). Effective soil type classification using convolutional neural network. International Journal of Informatics and Computation, 3(1), 20–29. https://doi.org/10.35842/ijicom.v3i1.33
DOI: https://doi.org/10.35842/ijicom.v3i1.33
Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161
DOI: https://doi.org/10.3390/s19194161
Harlianto, P. A., Adji, T. B., & Setiawan, N. A. (2017). Comparison of machine learning algorithms for soil type classification. 2017 3rd International Conference on Science and Technology - Computer (ICST), (pp. 7-10). IEEE. https://doi.org/10.1109/ICSTC.2017.8011843
DOI: https://doi.org/10.1109/ICSTC.2017.8011843
Hartemink, A. E., & Minasny, B. (2014). Towards digital soil morphometrics. Geoderma. 230-231, 305-317. https://doi.org/10.1016/j.geoderma.2014.03.008
DOI: https://doi.org/10.1016/j.geoderma.2014.03.008
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90
DOI: https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., Maaten, L. Van Der, & Weinberger, K. Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 2261– 2269). IEEE. https://doi.org/10.1109/CVPR.2017.243
DOI: https://doi.org/10.1109/CVPR.2017.243
Huang, G., Liu, Z., Pleiss, G., Maaten, L. van der, & Weinberger, K. Q. (2022). Convolutional networks with dense connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 8704– 8716. https://doi.org/10.1109/TPAMI.2019.2918284
DOI: https://doi.org/10.1109/TPAMI.2019.2918284
Kalyani, N. L., & Prakash, K. B. (2022). Soil color as a measurement for estimation of fertility using deep learning techniques. International Journal of Advanced Computer Science and Applications, 13(5), 305– 310. https://doi.org/10.14569/IJACSA.2022.0130536
DOI: https://doi.org/10.14569/IJACSA.2022.0130536
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25. Curran Associates.
Lanjewar, M. G., & Gurav, O. L. (2022). Convolutional neural networks based classifications of soil images. Multimedia Tools and Applications, 81, 10313–10336. https://doi.org/10.1007/s11042-022-12200-y
DOI: https://doi.org/10.1007/s11042-022-12200-y
Novakovi, J. D., Veljovi´c, A., Ili´, S. S., Papic, Z., & Milica, T. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics & Computer Science, 7 , 39–46.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. Eurasip Journal on Image and Video Processing, 35, 2016. https://doi.org/10.1186/s13640-016-0138-1
DOI: https://doi.org/10.1186/s13640-016-0138-1
Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310–316. https://doi.org/10.33564/ijeast.2020.v04i12.054
DOI: https://doi.org/10.33564/IJEAST.2020.v04i12.054
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556
Sun, X., Fang, H., Yang, Y., Zhu, D., Wang, L., Liu, J., & Xu, Y. (2021). Robust retinal vessel segmentation from a data augmentation perspective. In H. Fu, M. K. Garvin, T. MacGillivray, Y. Xu, & Y. Zheng (Eds.), Ophthalmic Medical Image Analysis (vol. 12970, pp. 189–198). Springer. https://doi.org/10.1007/978-3-030-87000-3_20
DOI: https://doi.org/10.1007/978-3-030-87000-3_20
Taher, K. I., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification algorithms for analyzing soil data. Asian Journal of Research in Computer Science, 8(2), 17–28. https://doi.org/10.9734/ajrcos/2021/v8i230196
DOI: https://doi.org/10.9734/ajrcos/2021/v8i230196
Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., & Leprévost, F. (2020). Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition. 2020 - 5th International Conference on Information Technology (InCIT), (pp. 300– 305) IEEE. https://doi.org/10.1109/InCIT50588.2020.9310787
DOI: https://doi.org/10.1109/InCIT50588.2020.9310787
Wang, M., & Deng, W. (2018). Deep visual domain adaptation: a survey. Neurocomputing, 312, 135–153. https://doi.org/10.1016/j.neucom.2018.05.083
DOI: https://doi.org/10.1016/j.neucom.2018.05.083
Wu, C., Zou, Y., & Zhan, J. (2019). DA-U-Net: Densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. IOP Conference Series: Materials Science and Engineering, 533, 012053 . https://doi.org/10.1088/1757-899X/533/1/012053
DOI: https://doi.org/10.1088/1757-899X/533/1/012053
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils : A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117
DOI: https://doi.org/10.1016/j.jenvman.2018.10.117