ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
sri_indra_maiyanti@mipa.unsri.ac.id
Abstract
Soil is a solid-particle that covers the earth's surface. Soils can be classified based their color. The color can be an indication of soil properties and soil conditions. Soil image classification requires high accuracy and caution. CNN works well on image classification, but CNN requires a large amount of data. Augmentation is one technique to overcome data needs like rotation and improving contrast. Rotation is the movement of rotating the image position randomly to various degrees. Gamma Correction is a method to improve image by decreasing or increasing the contrast. The rotation and Gamma Correction on augmentation can increase the amount of training data from 156 to 2500 soil images data. The classification of soil data is not referred to soil taxonomy system such as Entisols and Histosols but it used arbitrary simple classification based on color. Unfortunately, the weakness of the CNN is vanishing and exploded gradients. Another Deep learning that can overcome vanishing and exploded gradients is dense blocks. This study proposes a combination of Augmentation and CNN-Dense block where in the augmentation a combination of rotation and Gamma-correction techniques is used and Soil image classification based on color is used by the CNN-Dense block. The combination method is able to give excellent results, where all performances accuracy, precisions, recall and F1-Score are above 90%. The combination of rotation and Gamma Correction on augmentation and CNN is a robust method to use in soil image classification based on color.
Keywords:
References
Abuqaddom, I., Mahafzah, B. A., & Faris, H. (2021). Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients. Knowledge-Based Systems, 230, 107391. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107391 DOI: https://doi.org/10.1016/j.knosys.2021.107391
Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303 DOI: https://doi.org/10.1016/j.agwat.2020.106303
Chen, W., Yang, B., Li, J., & Wang, J. (2020). An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access, (vol. 8, pp. 178552–178562). IEEE. https://doi.org/10.1109/ACCESS.2020.3027794 DOI: https://doi.org/10.1109/ACCESS.2020.3027794
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1800–1807). IEEE. https://doi.org/10.1109/CVPR.2017.195 DOI: https://doi.org/10.1109/CVPR.2017.195
Desiani, A., Adrezo, M., Chika Marselina, N., Arhami, M., Salsabila, A., & Gibran Al-Filambany, M. (2022). A combination of image enhancement and U-Net architecture for segmentation in identifying brain tumors on CT-SCAN Images. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), (pp. 423–428). IEEE. https://doi.org/10.1109/ICIMCIS56303.2022.10017519 DOI: https://doi.org/10.1109/ICIMCIS56303.2022.10017519
Desiani, A., Erwin, Maiyanti, S. I., Suprihatin, B., Rachmatullah, N., Fauza, A. N., & Ramayanti, I. (2022). Rpeak detection of beat segmentation and convolution neural network for arrhythmia classification. Journal of Engineering Science and Technology (JESTEC), 17(2), 1231–1246.
Desiani, A., Erwin, Suprihatin, B., Adrezo, M., & Alfan, A. M. (2021). A hybrid system for enhancement retinal image reduction. 2021 International Conference on Informatics, Multimedia, Cyber, and Information System, (ICIMCIS), (pp. 80–85). IEEE. https://doi.org/10.1109/ICIMCIS53775.2021.9699259 DOI: https://doi.org/10.1109/ICIMCIS53775.2021.9699259
Desiani, A., Erwin, Suprihatin, B., Efriliyanti, F., Arhami, M., & Setyaningsih, E. (2022). VG-DropDNet a robust architecture for blood vessels segmentation on retinal image. IEEE Access, (vol. 10, pp. 92067- 92083). IEEE. https://doi.org/10.1109/access.2022.3202890 DOI: https://doi.org/10.1109/ACCESS.2022.3202890
Desiani, A., Erwin, Suprihatin, B., Yahdin, S., Putri, A. I., & Husein, F. R. (2021). Bi-path Architecture of CNN Segmentation and classification method for cervical cancer disorders based on pap-smear images. IAENG International Journal of Computer Science, 48(3), 37.
Erwin, Safmi, A., Desiani, A., Suprihatin, B., & Fathoni. (2022). The augmentation data of retina image for blood vessel segmentation using U-Net convolutional neural network method. International Journal of Computational Intelligence and Applications, 21(01), 2250004. https://doi.org/10.1142/S1469026822500043 DOI: https://doi.org/10.1142/S1469026822500043
Hamwood, J., Alonso-Caneiro, D., Read, S. A., Vincent, S. J., & Collins, M. J. (2018). Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomedical Optics Express, 9(7), 3049–3066. https://doi.org/10.1364/boe.9.003049 DOI: https://doi.org/10.1364/BOE.9.003049
Hamzah, Diqi, M., & Ronaldo, A. D. (2021). Effective soil type classification using convolutional neural network. International Journal of Informatics and Computation, 3(1), 20–29. https://doi.org/10.35842/ijicom.v3i1.33 DOI: https://doi.org/10.35842/ijicom.v3i1.33
Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161 DOI: https://doi.org/10.3390/s19194161
Harlianto, P. A., Adji, T. B., & Setiawan, N. A. (2017). Comparison of machine learning algorithms for soil type classification. 2017 3rd International Conference on Science and Technology - Computer (ICST), (pp. 7-10). IEEE. https://doi.org/10.1109/ICSTC.2017.8011843 DOI: https://doi.org/10.1109/ICSTC.2017.8011843
Hartemink, A. E., & Minasny, B. (2014). Towards digital soil morphometrics. Geoderma. 230-231, 305-317. https://doi.org/10.1016/j.geoderma.2014.03.008 DOI: https://doi.org/10.1016/j.geoderma.2014.03.008
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90 DOI: https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., Maaten, L. Van Der, & Weinberger, K. Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 2261– 2269). IEEE. https://doi.org/10.1109/CVPR.2017.243 DOI: https://doi.org/10.1109/CVPR.2017.243
Huang, G., Liu, Z., Pleiss, G., Maaten, L. van der, & Weinberger, K. Q. (2022). Convolutional networks with dense connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 8704– 8716. https://doi.org/10.1109/TPAMI.2019.2918284 DOI: https://doi.org/10.1109/TPAMI.2019.2918284
Kalyani, N. L., & Prakash, K. B. (2022). Soil color as a measurement for estimation of fertility using deep learning techniques. International Journal of Advanced Computer Science and Applications, 13(5), 305– 310. https://doi.org/10.14569/IJACSA.2022.0130536 DOI: https://doi.org/10.14569/IJACSA.2022.0130536
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25. Curran Associates.
Lanjewar, M. G., & Gurav, O. L. (2022). Convolutional neural networks based classifications of soil images. Multimedia Tools and Applications, 81, 10313–10336. https://doi.org/10.1007/s11042-022-12200-y DOI: https://doi.org/10.1007/s11042-022-12200-y
Novakovi, J. D., Veljovi´c, A., Ili´, S. S., Papic, Z., & Milica, T. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics & Computer Science, 7 , 39–46.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. Eurasip Journal on Image and Video Processing, 35, 2016. https://doi.org/10.1186/s13640-016-0138-1 DOI: https://doi.org/10.1186/s13640-016-0138-1
Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310–316. https://doi.org/10.33564/ijeast.2020.v04i12.054 DOI: https://doi.org/10.33564/IJEAST.2020.v04i12.054
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556
Sun, X., Fang, H., Yang, Y., Zhu, D., Wang, L., Liu, J., & Xu, Y. (2021). Robust retinal vessel segmentation from a data augmentation perspective. In H. Fu, M. K. Garvin, T. MacGillivray, Y. Xu, & Y. Zheng (Eds.), Ophthalmic Medical Image Analysis (vol. 12970, pp. 189–198). Springer. https://doi.org/10.1007/978-3-030-87000-3_20 DOI: https://doi.org/10.1007/978-3-030-87000-3_20
Taher, K. I., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification algorithms for analyzing soil data. Asian Journal of Research in Computer Science, 8(2), 17–28. https://doi.org/10.9734/ajrcos/2021/v8i230196 DOI: https://doi.org/10.9734/ajrcos/2021/v8i230196
Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., & Leprévost, F. (2020). Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition. 2020 - 5th International Conference on Information Technology (InCIT), (pp. 300– 305) IEEE. https://doi.org/10.1109/InCIT50588.2020.9310787 DOI: https://doi.org/10.1109/InCIT50588.2020.9310787
Wang, M., & Deng, W. (2018). Deep visual domain adaptation: a survey. Neurocomputing, 312, 135–153. https://doi.org/10.1016/j.neucom.2018.05.083 DOI: https://doi.org/10.1016/j.neucom.2018.05.083
Wu, C., Zou, Y., & Zhan, J. (2019). DA-U-Net: Densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. IOP Conference Series: Materials Science and Engineering, 533, 012053 . https://doi.org/10.1088/1757-899X/533/1/012053 DOI: https://doi.org/10.1088/1757-899X/533/1/012053
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils : A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117 DOI: https://doi.org/10.1016/j.jenvman.2018.10.117
Article Details
Abstract views: 812
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
