ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION

Sri INDRA MAIYANTI


Mathematics Departement, Mathematics and Natural Science Faculty, Universitas Sriwijaya (Indonesia)
https://orcid.org/0009-0009-9983-8279

Anita DESIANI

anita_desiani@unsri.ac.id
Mathematics Departement, Mathematics and Natural Science Faculty, Universitas Sriwijaya (Indonesia)
https://orcid.org/0000-0001-8851-2454

Syafrina LAMIN


Biology Department, Faculty of Mathematics and Natural Science, Universitas Sriwijaya (Indonesia)

P PUSPITAHATI


Agriculture Technology Departement, Faculty of Agriculture, Universitas Sriwijaya (Indonesia)

Muhammad ARHAMI


Informatics Technique Departement, Politeknik Negeri Lhokseumawe (Indonesia)

Nuni GOFAR


Soil Departement, Faculty of Agriculture, Universitas Sriwijaya (Indonesia)

Destika CAHYANA


Research Center for Geospasial, Research Organization for Earth Science and Maritime, the National Research and Innovation Agency of the Republic of Indonesia (Indonesia)
https://orcid.org/0000-0001-8461-0700

Abstract

Soil is a solid-particle that covers the earth's surface. Soils can be classified based their color. The color can be an indication of soil properties and soil conditions. Soil image classification requires high accuracy and caution. CNN works well on image classification, but CNN requires a large amount of data. Augmentation is one technique to overcome data needs like rotation and improving contrast. Rotation is the movement of rotating the image position randomly to various degrees. Gamma Correction is a method to improve image by decreasing or increasing the contrast. The rotation and Gamma Correction on augmentation can increase the amount of training data from 156 to 2500 soil images data. The classification of soil data is not referred to soil taxonomy system such as Entisols and Histosols but it used arbitrary simple classification based on color.  Unfortunately, the weakness of the CNN is vanishing and exploded gradients. Another Deep learning that can overcome vanishing and exploded gradients is dense blocks. This study proposes a combination of Augmentation and CNN-Dense block where in the augmentation a combination of rotation and Gamma-correction techniques is used and Soil image classification based on color is used by the CNN-Dense block. The combination method is able to give excellent results, where all performances accuracy, precisions, recall and F1-Score are above 90%. The combination of rotation and Gamma Correction on augmentation and CNN is a robust method to use in soil image classification based on color.

Supporting Agencies

This research was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2022 SP DIPA 023.17.2.677515/2022, By the Rector's Decree Number 0109/UN9.3.1/SK/2022

Keywords:

CNN, Image, Classification, Gamma Correction, Rotation, Soil

Abuqaddom, I., Mahafzah, B. A., & Faris, H. (2021). Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients. Knowledge-Based Systems, 230, 107391. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107391
DOI: https://doi.org/10.1016/j.knosys.2021.107391   Google Scholar

Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303
DOI: https://doi.org/10.1016/j.agwat.2020.106303   Google Scholar

Chen, W., Yang, B., Li, J., & Wang, J. (2020). An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access, (vol. 8, pp. 178552–178562). IEEE. https://doi.org/10.1109/ACCESS.2020.3027794
DOI: https://doi.org/10.1109/ACCESS.2020.3027794   Google Scholar

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1800–1807). IEEE. https://doi.org/10.1109/CVPR.2017.195
DOI: https://doi.org/10.1109/CVPR.2017.195   Google Scholar

Desiani, A., Adrezo, M., Chika Marselina, N., Arhami, M., Salsabila, A., & Gibran Al-Filambany, M. (2022). A combination of image enhancement and U-Net architecture for segmentation in identifying brain tumors on CT-SCAN Images. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), (pp. 423–428). IEEE. https://doi.org/10.1109/ICIMCIS56303.2022.10017519
DOI: https://doi.org/10.1109/ICIMCIS56303.2022.10017519   Google Scholar

Desiani, A., Erwin, Maiyanti, S. I., Suprihatin, B., Rachmatullah, N., Fauza, A. N., & Ramayanti, I. (2022). Rpeak detection of beat segmentation and convolution neural network for arrhythmia classification. Journal of Engineering Science and Technology (JESTEC), 17(2), 1231–1246.
  Google Scholar

Desiani, A., Erwin, Suprihatin, B., Adrezo, M., & Alfan, A. M. (2021). A hybrid system for enhancement retinal image reduction. 2021 International Conference on Informatics, Multimedia, Cyber, and Information System, (ICIMCIS), (pp. 80–85). IEEE. https://doi.org/10.1109/ICIMCIS53775.2021.9699259
DOI: https://doi.org/10.1109/ICIMCIS53775.2021.9699259   Google Scholar

Desiani, A., Erwin, Suprihatin, B., Efriliyanti, F., Arhami, M., & Setyaningsih, E. (2022). VG-DropDNet a robust architecture for blood vessels segmentation on retinal image. IEEE Access, (vol. 10, pp. 92067- 92083). IEEE. https://doi.org/10.1109/access.2022.3202890
DOI: https://doi.org/10.1109/ACCESS.2022.3202890   Google Scholar

Desiani, A., Erwin, Suprihatin, B., Yahdin, S., Putri, A. I., & Husein, F. R. (2021). Bi-path Architecture of CNN Segmentation and classification method for cervical cancer disorders based on pap-smear images. IAENG International Journal of Computer Science, 48(3), 37.
  Google Scholar

Erwin, Safmi, A., Desiani, A., Suprihatin, B., & Fathoni. (2022). The augmentation data of retina image for blood vessel segmentation using U-Net convolutional neural network method. International Journal of Computational Intelligence and Applications, 21(01), 2250004. https://doi.org/10.1142/S1469026822500043
DOI: https://doi.org/10.1142/S1469026822500043   Google Scholar

Hamwood, J., Alonso-Caneiro, D., Read, S. A., Vincent, S. J., & Collins, M. J. (2018). Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomedical Optics Express, 9(7), 3049–3066. https://doi.org/10.1364/boe.9.003049
DOI: https://doi.org/10.1364/BOE.9.003049   Google Scholar

Hamzah, Diqi, M., & Ronaldo, A. D. (2021). Effective soil type classification using convolutional neural network. International Journal of Informatics and Computation, 3(1), 20–29. https://doi.org/10.35842/ijicom.v3i1.33
DOI: https://doi.org/10.35842/ijicom.v3i1.33   Google Scholar

Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161
DOI: https://doi.org/10.3390/s19194161   Google Scholar

Harlianto, P. A., Adji, T. B., & Setiawan, N. A. (2017). Comparison of machine learning algorithms for soil type classification. 2017 3rd International Conference on Science and Technology - Computer (ICST), (pp. 7-10). IEEE. https://doi.org/10.1109/ICSTC.2017.8011843
DOI: https://doi.org/10.1109/ICSTC.2017.8011843   Google Scholar

Hartemink, A. E., & Minasny, B. (2014). Towards digital soil morphometrics. Geoderma. 230-231, 305-317. https://doi.org/10.1016/j.geoderma.2014.03.008
DOI: https://doi.org/10.1016/j.geoderma.2014.03.008   Google Scholar

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90
DOI: https://doi.org/10.1109/CVPR.2016.90   Google Scholar

Huang, G., Liu, Z., Maaten, L. Van Der, & Weinberger, K. Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 2261– 2269). IEEE. https://doi.org/10.1109/CVPR.2017.243
DOI: https://doi.org/10.1109/CVPR.2017.243   Google Scholar

Huang, G., Liu, Z., Pleiss, G., Maaten, L. van der, & Weinberger, K. Q. (2022). Convolutional networks with dense connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 8704– 8716. https://doi.org/10.1109/TPAMI.2019.2918284
DOI: https://doi.org/10.1109/TPAMI.2019.2918284   Google Scholar

Kalyani, N. L., & Prakash, K. B. (2022). Soil color as a measurement for estimation of fertility using deep learning techniques. International Journal of Advanced Computer Science and Applications, 13(5), 305– 310. https://doi.org/10.14569/IJACSA.2022.0130536
DOI: https://doi.org/10.14569/IJACSA.2022.0130536   Google Scholar

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25. Curran Associates.
  Google Scholar

Lanjewar, M. G., & Gurav, O. L. (2022). Convolutional neural networks based classifications of soil images. Multimedia Tools and Applications, 81, 10313–10336. https://doi.org/10.1007/s11042-022-12200-y
DOI: https://doi.org/10.1007/s11042-022-12200-y   Google Scholar

Novakovi, J. D., Veljovi´c, A., Ili´, S. S., Papic, Z., & Milica, T. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics & Computer Science, 7 , 39–46.
  Google Scholar

Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. Eurasip Journal on Image and Video Processing, 35, 2016. https://doi.org/10.1186/s13640-016-0138-1
DOI: https://doi.org/10.1186/s13640-016-0138-1   Google Scholar

Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310–316. https://doi.org/10.33564/ijeast.2020.v04i12.054
DOI: https://doi.org/10.33564/IJEAST.2020.v04i12.054   Google Scholar

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556
  Google Scholar

Sun, X., Fang, H., Yang, Y., Zhu, D., Wang, L., Liu, J., & Xu, Y. (2021). Robust retinal vessel segmentation from a data augmentation perspective. In H. Fu, M. K. Garvin, T. MacGillivray, Y. Xu, & Y. Zheng (Eds.), Ophthalmic Medical Image Analysis (vol. 12970, pp. 189–198). Springer. https://doi.org/10.1007/978-3-030-87000-3_20
DOI: https://doi.org/10.1007/978-3-030-87000-3_20   Google Scholar

Taher, K. I., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification algorithms for analyzing soil data. Asian Journal of Research in Computer Science, 8(2), 17–28. https://doi.org/10.9734/ajrcos/2021/v8i230196
DOI: https://doi.org/10.9734/ajrcos/2021/v8i230196   Google Scholar

Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., & Leprévost, F. (2020). Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition. 2020 - 5th International Conference on Information Technology (InCIT), (pp. 300– 305) IEEE. https://doi.org/10.1109/InCIT50588.2020.9310787
DOI: https://doi.org/10.1109/InCIT50588.2020.9310787   Google Scholar

Wang, M., & Deng, W. (2018). Deep visual domain adaptation: a survey. Neurocomputing, 312, 135–153. https://doi.org/10.1016/j.neucom.2018.05.083
DOI: https://doi.org/10.1016/j.neucom.2018.05.083   Google Scholar

Wu, C., Zou, Y., & Zhan, J. (2019). DA-U-Net: Densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. IOP Conference Series: Materials Science and Engineering, 533, 012053 . https://doi.org/10.1088/1757-899X/533/1/012053
DOI: https://doi.org/10.1088/1757-899X/533/1/012053   Google Scholar

Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils : A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117
DOI: https://doi.org/10.1016/j.jenvman.2018.10.117   Google Scholar

Download


Published
2023-09-30

Cited by

INDRA MAIYANTI, S., DESIANI, A., LAMIN, S., PUSPITAHATI, P., ARHAMI, M., GOFAR, N., & CAHYANA, D. (2023). ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION. Applied Computer Science, 19(3), 96–115. https://doi.org/10.35784/acs-2023-27

Authors

Sri INDRA MAIYANTI 

Mathematics Departement, Mathematics and Natural Science Faculty, Universitas Sriwijaya Indonesia
https://orcid.org/0009-0009-9983-8279

Authors

Anita DESIANI 
anita_desiani@unsri.ac.id
Mathematics Departement, Mathematics and Natural Science Faculty, Universitas Sriwijaya Indonesia
https://orcid.org/0000-0001-8851-2454

Authors

Syafrina LAMIN 

Biology Department, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indonesia

Authors

P PUSPITAHATI 

Agriculture Technology Departement, Faculty of Agriculture, Universitas Sriwijaya Indonesia

Authors

Muhammad ARHAMI 

Informatics Technique Departement, Politeknik Negeri Lhokseumawe Indonesia

Authors

Nuni GOFAR 

Soil Departement, Faculty of Agriculture, Universitas Sriwijaya Indonesia

Authors

Destika CAHYANA 

Research Center for Geospasial, Research Organization for Earth Science and Maritime, the National Research and Innovation Agency of the Republic of Indonesia Indonesia
https://orcid.org/0000-0001-8461-0700

Statistics

Abstract views: 421
PDF downloads: 172


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.