Akshatha, K. R., Karunakar, A. K., Shenoy, S. B., Pai, A. K., Nagaraj, N. H., & Rohatgi, S. S. (2022). human detection in aerial thermal images using faster r-cnn and ssd algorithms. Electronics, 11(7), 1151. https://doi.org/10.3390/ELECTRONICS11071151
Andreella, A., & Finos, L. (2022). Procrustes Analysis for High-Dimensional Data. Psychometrika, 87, 1422– 1438. https://doi.org/10.1007/S11336-022-09859-5
Ben Gamra, M. B., & Akhloufi, M. A. (2021). A review of deep learning techniques for 2D and 3D human pose estimation. Image and Vision Computing, 114, 104282. https://doi.org/10.1016/J.IMAVIS.2021.104282
Burenius, M., Sullivan, J., & Carlsson, S. (2013). 3D pictorial structures for multiple view articulated pose estimation. 2013 IEEE Conference on Computer Vision and Pattern Recognition, (pp. 3618–3625). IEEE. https://doi.org/10.1109/CVPR.2013.464
Chen, Y., Shen, C., Chen, H., Wei, X.- S., Liu, L., & Yang, J. (2020). Adversarial learning of structure-aware fully convolutional networks for landmark localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), (pp. 1654–1669). IEEE. https://doi.org/10.1109/TPAMI.2019.2901875
Dubey, S., & Dixit, M. (2023). A comprehensive survey on human pose estimation approaches. Multimedia Systems, 29, 167–195. https://doi.org/10.1007/s00530-022-00980-0
Duong, H.-T., & Nguyen-Thi, T.-A. (2021). A review: preprocessing techniques and data augmentation for sentiment analysis. Computational Social Networks, 8, 1. https://doi.org/10.1186/s40649-020-00080-x
Eichner, M., & Ferrari, V. (2009). Better appearance models for pictorial structures. British Machine Vision Conference, BMVC 2009 - Proceedings. https://doi.org/10.5244/C.23.3
Fischler, M. A., & Elschlager, R. A. (1973). The Representation and Matching of Pictorial Structures Representation. IEEE Transactions on Computers, C–22(1), 67–92. https://doi.org/10.1109/TC.1973.223602
Ganapathi, V., Plagemann, C., Koller, D., & Thrun, S. (2012). Real-time human pose tracking from range data. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds). Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, (pp. 738–751). Springer. https://doi.org/10.1007/978- 3-642-33783-3_53
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
Haring, M., Grotli, E. I., Riemer-Sorensen, S., Seel, K., & Hanssen, K. G. (2022). A Levenberg-Marquardt Algorithm for Sparse Identification of Dynamical Systems. IEEE Transactions on Neural Networks and Learning Systems, 1-14, https://doi.org/10.1109/TNNLS.2022.3157963
Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014). Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 1325–1339. https://doi.org/10.1109/TPAMI.2013.248
Lee, K., Lee, I., & Lee, S. (2018). Propagating LSTM: 3D pose estimation based on joint interdependency. In Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, (vol. 11211, pp. 123–141). Springer. https://doi.org/10.1007/978-3- 030-01234-2_8
Lin, T.- Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds), Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, (vol. 8693, pp. 740– 755). Springer. https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Blancaflor, E. B., & Abisado, M. (2023). A lightweight multi-person pose estimation scheme based on jetson nano. Applied Computer Science, 19(1) 1-14. https://doi.org/10.35784/acs-2023-01
Liu, R., Shen, J., Wang, H., Chen, C., Cheung, S. C., & Asari, V. (2020). Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5063–5072. https://doi.org/10.1109/CVPR42600.2020.00511
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Martinez, J., Hossain, R., Romero, J., & Little, J. J. (2017). A simple yet effective baseline for 3d human pose estimation. 2017 IEEE International Conference on Computer Vision (ICCV), (pp. 2659–2668). IEEE. https://doi.org/10.1109/ICCV.2017.288
Mehni, M. B., & Mehni, M. B. (2023). Reliability analysis with cross-entropy based adaptive markov chain importance sampling and control variates. Reliability Engineering & System Safety, 231, 109014. https://doi.org/10.1016/J.RESS.2022.109014
Mujhid, A., Surono, S., Irsalinda, N., & Thobirin, A. (2022). Comparison and combination of leaky ReLU and ReLU activation function and three optimizers on deep CNN for COVID-19 detection. Frontiers in Artificial Intelligence and Applications, 358, 50-57. https://doi.org/10.3233/FAIA220369
Şengöz, N., Yigit, T., Özmen, Ö., Isik, A.- H. (2022). importance of preprocessing in histopathology image classification using deep convolutional neural network. Advances in Artificial Intelligence Research, 2(1), 1–6. https://doi.org/10.54569/aair.1016544
Remelli, E., Han, S., Honari, S., Fua, P., & Wang, R. (2020). Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 6039–6048). IEEE. https://doi.org/10.1109/CVPR42600.2020.00608
Rohrbach, A., Torabi, A., Rohrbach, M., Tandon, N., Pal, C., Larochelle, H., Courville, A., & Schiele, B. (2017). Movie description. International Journal of Computer Vision, 123(1), 94–120. https://doi.org/10.1007/S11263-016-0987-1
Rong, Y., Shiratori, T., & Joo, H. (2021). FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), (pp. 1749–1759). IEEE. https://doi.org/10.1109/ICCVW54120.2021.00201
Sigal, L., Bhatia, S., Roth, S., Black, M. J., & Isard, M. (2004). Tracking loose-limbed people. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (pp. 1-1). IEEE. https://doi.org/10.1109/CVPR.2004.1315063
Surasak, T., Takahiro, I., Cheng, C. H., Wang, C. -e., & Sheng, P. Y. (2018). Histogram of oriented gradients for human detection in video. 2018 5th International Conference on Business and Industrial Research (ICBIR), (pp. 172–176). IEEE. https://doi.org/10.1109/ICBIR.2018.8391187
Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., & Shao, L. (2021). Deep 3D human pose estimation: A review. Computer Vision and Image Understanding, 210, 103225. https://doi.org/10.1016/j.cviu.2021.103225
Wang, S., Huang, K., Chen, Z., & Zhang, W. (2023). Survey on 3D Human Pose Estimation of Deep Learning. Journal of Frontiers of Computer Science and Technology, 17(1), 74–87. https://doi.org/10.3778/j.issn.1673-9418.2205070
Wang, Z., Jiang, M., Hu, Y., & Li, H. (2012). An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 16(4), 691–699. https://doi.org/10.1109/TITB.2012.2196440
Yang, Y., & Ramanan, D. (2011). Articulated pose estimation with flexible mixtures-of-parts. CVPR 2011, Colorado Springs, (pp. 1385–1392). IEEE. https://doi.org/10.1109/CVPR.2011.5995741
Zhang, J., Tu, Z., Yang, J., Chen, Y., & Yuan, J. (2022). MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp.13222–13232). IEEE. https://doi.org/10.1109/CVPR52688.2022.01288
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. IEEE, 109(1) 43–76. https://doi.org/10.1109/JPROC.2020.3004555