RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
gex@students.national-u.edu.ph
Abstract
3D human pose estimation (3D-HPE) has emerged as a prominent research area with diverse applications. This work focuses on enhancing the accuracy of 3D-HPE by proposing a two-stage model with a multi-feature fusion approach. The proposed model utilizes convolutional kernels of different sizes to extract feature maps with diverse resolutions and dimensions. These feature maps, along with the 2D coordinates of key joint points from the input frame, are fused in the first stage. In the second stage, the fused feature map is combined with the feature points of 2D key joints to jointly predict the key joints in 3D space. Experimental evaluations demonstrate the superiority of the proposed model over representative methods. It achieves significant improvements of 9.47% and 8.55% in average MPJPE and average P-MPJPE, respectively, which are critical metrics for evaluating pose estimation accuracy. The proposed two-stage model with multi-feature fusion offers a comprehensive and accurate approach to 3D-HPE. It outperforms existing methods and showcases its effectiveness in capturing the intricate details of human poses. The results validate the significance of the proposed model in advancing the field of 3D-HPE.
References
Akshatha, K. R., Karunakar, A. K., Shenoy, S. B., Pai, A. K., Nagaraj, N. H., & Rohatgi, S. S. (2022). human detection in aerial thermal images using faster r-cnn and ssd algorithms. Electronics, 11(7), 1151. https://doi.org/10.3390/ELECTRONICS11071151
Andreella, A., & Finos, L. (2022). Procrustes Analysis for High-Dimensional Data. Psychometrika, 87, 1422– 1438. https://doi.org/10.1007/S11336-022-09859-5
Ben Gamra, M. B., & Akhloufi, M. A. (2021). A review of deep learning techniques for 2D and 3D human pose estimation. Image and Vision Computing, 114, 104282. https://doi.org/10.1016/J.IMAVIS.2021.104282
Burenius, M., Sullivan, J., & Carlsson, S. (2013). 3D pictorial structures for multiple view articulated pose estimation. 2013 IEEE Conference on Computer Vision and Pattern Recognition, (pp. 3618–3625). IEEE. https://doi.org/10.1109/CVPR.2013.464
Chen, Y., Shen, C., Chen, H., Wei, X.- S., Liu, L., & Yang, J. (2020). Adversarial learning of structure-aware fully convolutional networks for landmark localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), (pp. 1654–1669). IEEE. https://doi.org/10.1109/TPAMI.2019.2901875
Dubey, S., & Dixit, M. (2023). A comprehensive survey on human pose estimation approaches. Multimedia Systems, 29, 167–195. https://doi.org/10.1007/s00530-022-00980-0
Duong, H.-T., & Nguyen-Thi, T.-A. (2021). A review: preprocessing techniques and data augmentation for sentiment analysis. Computational Social Networks, 8, 1. https://doi.org/10.1186/s40649-020-00080-x
Eichner, M., & Ferrari, V. (2009). Better appearance models for pictorial structures. British Machine Vision Conference, BMVC 2009 - Proceedings. https://doi.org/10.5244/C.23.3
Fischler, M. A., & Elschlager, R. A. (1973). The Representation and Matching of Pictorial Structures Representation. IEEE Transactions on Computers, C–22(1), 67–92. https://doi.org/10.1109/TC.1973.223602
Ganapathi, V., Plagemann, C., Koller, D., & Thrun, S. (2012). Real-time human pose tracking from range data. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds). Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, (pp. 738–751). Springer. https://doi.org/10.1007/978- 3-642-33783-3_53
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
Haring, M., Grotli, E. I., Riemer-Sorensen, S., Seel, K., & Hanssen, K. G. (2022). A Levenberg-Marquardt Algorithm for Sparse Identification of Dynamical Systems. IEEE Transactions on Neural Networks and Learning Systems, 1-14, https://doi.org/10.1109/TNNLS.2022.3157963
Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014). Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 1325–1339. https://doi.org/10.1109/TPAMI.2013.248
Lee, K., Lee, I., & Lee, S. (2018). Propagating LSTM: 3D pose estimation based on joint interdependency. In Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, (vol. 11211, pp. 123–141). Springer. https://doi.org/10.1007/978-3- 030-01234-2_8
Lin, T.- Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds), Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, (vol. 8693, pp. 740– 755). Springer. https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Blancaflor, E. B., & Abisado, M. (2023). A lightweight multi-person pose estimation scheme based on jetson nano. Applied Computer Science, 19(1) 1-14. https://doi.org/10.35784/acs-2023-01
Liu, R., Shen, J., Wang, H., Chen, C., Cheung, S. C., & Asari, V. (2020). Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5063–5072. https://doi.org/10.1109/CVPR42600.2020.00511
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Martinez, J., Hossain, R., Romero, J., & Little, J. J. (2017). A simple yet effective baseline for 3d human pose estimation. 2017 IEEE International Conference on Computer Vision (ICCV), (pp. 2659–2668). IEEE. https://doi.org/10.1109/ICCV.2017.288
Mehni, M. B., & Mehni, M. B. (2023). Reliability analysis with cross-entropy based adaptive markov chain importance sampling and control variates. Reliability Engineering & System Safety, 231, 109014. https://doi.org/10.1016/J.RESS.2022.109014
Mujhid, A., Surono, S., Irsalinda, N., & Thobirin, A. (2022). Comparison and combination of leaky ReLU and ReLU activation function and three optimizers on deep CNN for COVID-19 detection. Frontiers in Artificial Intelligence and Applications, 358, 50-57. https://doi.org/10.3233/FAIA220369
Şengöz, N., Yigit, T., Özmen, Ö., Isik, A.- H. (2022). importance of preprocessing in histopathology image classification using deep convolutional neural network. Advances in Artificial Intelligence Research, 2(1), 1–6. https://doi.org/10.54569/aair.1016544
Remelli, E., Han, S., Honari, S., Fua, P., & Wang, R. (2020). Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 6039–6048). IEEE. https://doi.org/10.1109/CVPR42600.2020.00608
Rohrbach, A., Torabi, A., Rohrbach, M., Tandon, N., Pal, C., Larochelle, H., Courville, A., & Schiele, B. (2017). Movie description. International Journal of Computer Vision, 123(1), 94–120. https://doi.org/10.1007/S11263-016-0987-1
Rong, Y., Shiratori, T., & Joo, H. (2021). FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), (pp. 1749–1759). IEEE. https://doi.org/10.1109/ICCVW54120.2021.00201
Sigal, L., Bhatia, S., Roth, S., Black, M. J., & Isard, M. (2004). Tracking loose-limbed people. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (pp. 1-1). IEEE. https://doi.org/10.1109/CVPR.2004.1315063
Surasak, T., Takahiro, I., Cheng, C. H., Wang, C. -e., & Sheng, P. Y. (2018). Histogram of oriented gradients for human detection in video. 2018 5th International Conference on Business and Industrial Research (ICBIR), (pp. 172–176). IEEE. https://doi.org/10.1109/ICBIR.2018.8391187
Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., & Shao, L. (2021). Deep 3D human pose estimation: A review. Computer Vision and Image Understanding, 210, 103225. https://doi.org/10.1016/j.cviu.2021.103225
Wang, S., Huang, K., Chen, Z., & Zhang, W. (2023). Survey on 3D Human Pose Estimation of Deep Learning. Journal of Frontiers of Computer Science and Technology, 17(1), 74–87. https://doi.org/10.3778/j.issn.1673-9418.2205070
Wang, Z., Jiang, M., Hu, Y., & Li, H. (2012). An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 16(4), 691–699. https://doi.org/10.1109/TITB.2012.2196440
Yang, Y., & Ramanan, D. (2011). Articulated pose estimation with flexible mixtures-of-parts. CVPR 2011, Colorado Springs, (pp. 1385–1392). IEEE. https://doi.org/10.1109/CVPR.2011.5995741
Zhang, J., Tu, Z., Yang, J., Chen, Y., & Yuan, J. (2022). MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp.13222–13232). IEEE. https://doi.org/10.1109/CVPR52688.2022.01288
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. IEEE, 109(1) 43–76. https://doi.org/10.1109/JPROC.2020.3004555
Article Details
Abstract views: 182
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Xianlei GE, National University, College of Computing and Information Technologies, Huainan Normal University, School of Electronic Engineering,
Vladimir MARIANO, National University, College of Computing and Information Technologies
