Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. ArXiv, abs/1603.04467. https://doi.org/10.48550/ARXIV.1603.04467
Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854. https://doi.org/10.1073/pnas.1903070116
DOI: https://doi.org/10.1073/pnas.1903070116
Blalock, D., Ortiz, J. J. G., Frankle, J., & Guttag, J. (2020). What is the state of neural network pruning?. ArXiv, abs/2003.03033. https://doi.org/10.48550/arXiv.2003.03033
Bouthillier, X., Delaunay, P., Bronzi, M., Trofimov, A., Nichyporuk, B., Szeto, J., Sepah, N., Raff, E., Madan, K., Voleti, V., Kahou, S. E., Michalski, V., Serdyuk, D., Arbel, T., Pal, C., Varoquaux, G., & Vincent, P. (2021). Accounting for variance in machine learning benchmarks. ArXiv, abs/2103.03098. https://doi.org/10.48550/ARXIV.2103.03098
Choi, Y., El-Khamy, M., & Lee, J. (2016). Towards the limit of network quantization. ArXiv, abs/1612.01543. https://doi.org/10.48550/arXiv.1612.01543
Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). EMNIST: Extending MNIST to handwritten letters. 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2921-2926). IEEE. https://doi.org/10.1109/IJCNN.2017.7966217
DOI: https://doi.org/10.1109/IJCNN.2017.7966217
Gajoui, K. E., Allah, F. A., & Oumsis, M. (2015). Diacritical language OCR based on neural network: Case of amazigh language. Procedia Computer Science, 73, 298‒305. https://doi.org/10.1016/j.procs.2015.12.035
DOI: https://doi.org/10.1016/j.procs.2015.12.035
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. ArXiv, abs/1512.07108. https://doi.org/10.48550/arXiv.1512.07108
DOI: https://doi.org/10.1016/j.patcog.2017.10.013
Hadidi, R., Cao, J., Xie, Y., Asgari, B., Krishna, T., & Kim, H. (2019). Characterizing the deployment of deep neural networks on commercial edge devices. 2019 IEEE International Symposium on Workload Characterization (IISWC) (pp. 35-48). IEEE. https://doi.org/10.1109/IISWC47752.2019.9041955
DOI: https://doi.org/10.1109/IISWC47752.2019.9041955
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). IEEE. https://doi.org/10.1109/CVPR.2016.90
DOI: https://doi.org/10.1109/CVPR.2016.90
Idziak, J., Šeļa, A., Woźniak, M., Leśniak, A., Byszuk, J., & Eder, M. (2021). Scalable handwritten text recognition system for lexicographic sources of under-resourced languages and alphabets. In International Conference on Computational Science 2021 (pp. 137–150). Springer. https://doi.org/10.1007/978-3-030-77961-0_13
DOI: https://doi.org/10.1007/978-3-030-77961-0_13
Islam, N., Islam, Z., & Noor, N. (2017). A Survey on optical character recognition system. ArXiv, abs/1710.05703. https://doi.org/10.48550/arXiv.1710.05703
Lukasik, E., Charytanowicz, M., Milosz, M., Tokovarov, M., Kaczorowska, M., Czerwinski, D., & Zientarski, T. (2021). Recognition of handwritten Latin characters with diacritics using CNN. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(1), e136210. https://doi.org/10.24425/bpasts.2020.136210
DOI: https://doi.org/10.24425/bpasts.2020.136210
Lutf, M., You, X., Cheung, Y., & Chen, C. (2014). Arabic font recognition based on diacritics features. Pattern Recognition, 47(2), 672–684. https://doi.org/10.1016/j.patcog.2013.07.015
DOI: https://doi.org/10.1016/j.patcog.2013.07.015
Łukasik, E.,& Zientarski, T. (2018). Comparative analysis of selected programs for optical text recognition. Journal of Computer Sciences Institute, 7, 191-194. https://doi.org/10.35784/jcsi.676
DOI: https://doi.org/10.35784/jcsi.676
Sharma, R., Kaushik, B., & Gondhi, N. (2020). Character recognition using machine learning and deep learning - a survey. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 341-345). IEEE. http://doi.org/10.1109/ESCI48226.2020.9167649
DOI: https://doi.org/10.1109/ESCI48226.2020.9167649
Tokovarov, M., Kaczorowska, M., & Milosz, M. (2020). Development of extensive polish handwritten characters database for text recognition research. Advances in Science and Technology Research Journal, 14(3), 30-38. https://doi.org/10.12913/22998624/122567
DOI: https://doi.org/10.12913/22998624/122567
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. ArXiv, abs/1706.03762. https://doi.org/10.48550/arXiv.1706.03762
Wang, H., Qin, C., Bai, Y., Zhang, Y., & Fu, Y. (2022). Recent advances on neural network pruning at initialization. ArXiv, abs/2103.06460. https://doi.org/10.48550/arXiv.2103.06460
DOI: https://doi.org/10.24963/ijcai.2022/786