A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The objective of this research was to compare the effectiveness of the GARCH method with machine learning techniques in predicting asset volatility in the main Latin American markets. The daily squared return was utilized as a volatility indicator, and the accuracy of the predictions was assessed using root mean square error (RMSE) and mean absolute error (MAE) metrics. The findings consistently demonstrated that the linear SVR-GARCH models outperformed other approaches, exhibiting the lowest MAE and MSE values across various assets in the test sample. Specifically, the SVRGARCH RBF model achieved the most accurate results for the IPC asset. It was observed that GARCH models tended to produce higher volatility forecasts during periods of heightened volatility due to their responsiveness to significant past changes. Consequently, this led to larger squared prediction errors for GARCH models compared to SVR models. This suggests that incorporating machine learning techniques can provide improved volatility forecasting capabilities compared to the traditional GARCH models.
Keywords:
References
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 DOI: https://doi.org/10.1016/0304-4076(86)90063-1
Bezerra, P., Albuquerque, P. (2017). Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels. Computational Management Science, 14, 179–196. https://doi.org/10.1007/s10287-016- 0267-0 DOI: https://doi.org/10.1007/s10287-016-0267-0
Chen, S., Jeong, K., & Härdle, W. K. (2008). Support vector regression based GARCH model with application to forecasting volatility of financial returns. SFB 649 Discussion SFB 649 Discussion Paper 2008-014. https://dx.doi.org/10.2139/ssrn.2894286 DOI: https://doi.org/10.2139/ssrn.2894286
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015. https://doi.org/10.1016/j.dajour.2021.100015 DOI: https://doi.org/10.1016/j.dajour.2021.100015
Christensen, K., Siggaard, M., & Veliyev, B. (2022). A Machine Learning Approach to Volatility Forecasting. Journal of Financial Econometrics, nbac02. https://doi.org/10.1093/jjfinec/nbac020 DOI: https://doi.org/10.1093/jjfinec/nbac020
Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., Reis Alves, S. F. (2016). Artificial Neural Networks: A Practical Course (pp. 3-19). Springer. https://doi.org/10.1007/978-3-319-43162- 8_1 DOI: https://doi.org/10.1007/978-3-319-43162-8_1
D’Ecclesia, R. L., & Clementi, D. (2021). Volatility in the stock market: ANN versus parametric models. Annals of Operations Research, 299(1), 1101-1127. https://doi.org/10.1007/s10479-019-03374-0 DOI: https://doi.org/10.1007/s10479-019-03374-0
Feng, H., Kong, F., & Xiao, Y. (2011). Vessel Traffic Flow Forecasting Model Study based on Support Vector Machine. In Shen, G., Huang, X. (eds), Advanced Research on Electronic Commerce, Web Application, and Communication. ECWAC 2011. Communications in Computer and Information Science, (vol. 143, pp. 446 – 451). Springer. https://doi.org/10.1007/978-3-642- 20367-1_72 DOI: https://doi.org/10.1007/978-3-642-20367-1_72
Filipovic, D., & Khalilzadeh, A. (2021). Machine Learning for Predicting Stock Return Volatility. Swiss Finance Institute Research Paper. 21-95. http://dx.doi.org/10.2139/ssrn.3995529 DOI: https://doi.org/10.2139/ssrn.3995529
Fraz, T. R., Fatima, S., & Uddin, M. (2022). Modeling and Forecasting Stock Market Volatility of CPEC Founding Countries: Using Nonlinear Time Series and Machine Learning Models. JISR Management and Social Sciences & Economics, 20(1), 1–20. https://doi.org/10.31384/jisrmsse/2022.20.1.1 DOI: https://doi.org/10.31384/jisrmsse/2022.20.1.1
Gholami, R., Fakhari, N. (2017). Chapter 27 - Support Vector Machine: Principles, Parameters, and Applications. In Samui, P., Sekhar, S., and Balas, V. E., (eds), Handbook of Neural Computation, ( vol. 2017, pp. 515-535) . Academic Press. https://doi.org/10.1016/B978-0-12-811318-9.00027-2 DOI: https://doi.org/10.1016/B978-0-12-811318-9.00027-2
Karasan, A. & Gaygısız, E. (2022). Volatility Prediction and Risk Management: An SVR-GARCH. SSRN. http://dx.doi.org/10.2139/ssrn.4285524 DOI: https://doi.org/10.2139/ssrn.4285524
Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using hybrid neural network models. Expert Systems with Applications, 41(5), 2437-2442. https://doi.org/10.1016/j.eswa.2013.09.043 DOI: https://doi.org/10.1016/j.eswa.2013.09.043
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974 DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Bildirici, M., & Ersin, Ö. (2014). Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns. The Scientific World Journal, 2014, 497941. https://doi.org/10.1155/2014/497941 DOI: https://doi.org/10.1155/2014/497941
Monfared, S. A., & Enke, D. (2014). Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model. Procedia Computer Science, 36, 246-253. https://doi.org/10.1016/j.procs.2014.09.087 DOI: https://doi.org/10.1016/j.procs.2014.09.087
Rodríguez - Vargas, A. (2020). Forecasting Costa Rica inflation with machine learning methods. Latin American Journal of Central Banking, 1,(1-4), 100012. https://doi.org/10.1016/j.latcb.2020.100012 DOI: https://doi.org/10.1016/j.latcb.2020.100012
Roghani, A. (2016). Artificial Neural Networks: Applications in Financial Forecasting. CreateSpace Independent Publishing Platform.
Satria, D. (2023). Predicting Banking Stock Prices Using RNN, LSTM, and GRU Approach. Applied Computer Science, 19(1) 82-84. https://doi.org/10.35784/acs-2023-06 DOI: https://doi.org/10.35784/acs-2023-06
Scholkopf, B., Smola, A. (2018). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning series. MIT Press. DOI: https://doi.org/10.7551/mitpress/4175.001.0001
Shen, Z., Wan, Q., & Leatham, D. J. (2021). Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN. Risk and Financial Management, 14(7), 337. https://doi.org/10.3390/jrfm14070337 DOI: https://doi.org/10.3390/jrfm14070337
Sun, H., & Yu, B. (2020). Forecasting Financial Returns Volatility: A GARCH-SVR Model. Computational Economics, 55, 451–47. https://doi.org/10.1007/s10614-019-09896-w DOI: https://doi.org/10.1007/s10614-019-09896-w
Verma, S. (2021). Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach. Intelligent Systems in Accounting, Finance and Management, 28(2), 130–142. https://doi.org/10.1002/isaf.1489 DOI: https://doi.org/10.1002/isaf.1489
Wang, L. (2005). Support Vector Machines: Theory and Applications. In Wang, L. (ed.), Studies in Fuzziness and Soft Computing. ( vol. 177). Springer. DOI: https://doi.org/10.1007/b95439
Y, X., Wen, X., & Y, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems, 12721. https://doi.org/10.1117/12.2683400
Yi, X., Wen, X., & Yin, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems (ISCAIS 2023), 12721. https://doi.org/10.1117/12.2683400 DOI: https://doi.org/10.1117/12.2683400
Yamaka, W., Srichaikul, W., & Maneejuk, P. (2021). Support Vector Machine-Based GARCH-type Models: Evidence from ASEAN-5 Stock Markets. In: Ngoc Thach, N., Kreinovich, V., Trung, N.D. (eds), Data Science for Financial Econometrics. Studies in Computational Intelligence ( vol. 898, pp. 369-381). Springer, https://doi.org/10.1007/978-3-030-48853-6_26 DOI: https://doi.org/10.1007/978-3-030-48853-6_26
Zahid, M., Iqbal, F., Koutmos, D. (2022). Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning. Risks, 10(12), 237. https://doi.org/10.3390/risks10120237 DOI: https://doi.org/10.3390/risks10120237
Zhang, C., Zhang, Y., Cucuringu, M., & Qian, Z. (2022). Volatility forecasting with machine learning and intraday commonality. arXiv. https://doi.org/10.48550/arXiv.2202.08962 DOI: https://doi.org/10.2139/ssrn.4022147
Zhang, G. & Qian, G. (2021). Out-of-sample realized volatility forecasting: does the support vector regression compete combination methods. Applied Economics, 53(19), 2192-2205. https://doi.org/10.1080/00036846.2020.1856326 DOI: https://doi.org/10.1080/00036846.2020.1856326
Article Details
Abstract views: 724
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
