Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
DOI: https://doi.org/10.1016/0304-4076(86)90063-1
Bezerra, P., Albuquerque, P. (2017). Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels. Computational Management Science, 14, 179–196. https://doi.org/10.1007/s10287-016- 0267-0
DOI: https://doi.org/10.1007/s10287-016-0267-0
Chen, S., Jeong, K., & Härdle, W. K. (2008). Support vector regression based GARCH model with application to forecasting volatility of financial returns. SFB 649 Discussion SFB 649 Discussion Paper 2008-014. https://dx.doi.org/10.2139/ssrn.2894286
DOI: https://doi.org/10.2139/ssrn.2894286
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015. https://doi.org/10.1016/j.dajour.2021.100015
DOI: https://doi.org/10.1016/j.dajour.2021.100015
Christensen, K., Siggaard, M., & Veliyev, B. (2022). A Machine Learning Approach to Volatility Forecasting. Journal of Financial Econometrics, nbac02. https://doi.org/10.1093/jjfinec/nbac020
DOI: https://doi.org/10.1093/jjfinec/nbac020
Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., Reis Alves, S. F. (2016). Artificial Neural Networks: A Practical Course (pp. 3-19). Springer. https://doi.org/10.1007/978-3-319-43162- 8_1
DOI: https://doi.org/10.1007/978-3-319-43162-8_1
D’Ecclesia, R. L., & Clementi, D. (2021). Volatility in the stock market: ANN versus parametric models. Annals of Operations Research, 299(1), 1101-1127. https://doi.org/10.1007/s10479-019-03374-0
DOI: https://doi.org/10.1007/s10479-019-03374-0
Feng, H., Kong, F., & Xiao, Y. (2011). Vessel Traffic Flow Forecasting Model Study based on Support Vector Machine. In Shen, G., Huang, X. (eds), Advanced Research on Electronic Commerce, Web Application, and Communication. ECWAC 2011. Communications in Computer and Information Science, (vol. 143, pp. 446 – 451). Springer. https://doi.org/10.1007/978-3-642- 20367-1_72
DOI: https://doi.org/10.1007/978-3-642-20367-1_72
Filipovic, D., & Khalilzadeh, A. (2021). Machine Learning for Predicting Stock Return Volatility. Swiss Finance Institute Research Paper. 21-95. http://dx.doi.org/10.2139/ssrn.3995529
DOI: https://doi.org/10.2139/ssrn.3995529
Fraz, T. R., Fatima, S., & Uddin, M. (2022). Modeling and Forecasting Stock Market Volatility of CPEC Founding Countries: Using Nonlinear Time Series and Machine Learning Models. JISR Management and Social Sciences & Economics, 20(1), 1–20. https://doi.org/10.31384/jisrmsse/2022.20.1.1
DOI: https://doi.org/10.31384/jisrmsse/2022.20.1.1
Gholami, R., Fakhari, N. (2017). Chapter 27 - Support Vector Machine: Principles, Parameters, and Applications. In Samui, P., Sekhar, S., and Balas, V. E., (eds), Handbook of Neural Computation, ( vol. 2017, pp. 515-535) . Academic Press. https://doi.org/10.1016/B978-0-12-811318-9.00027-2
DOI: https://doi.org/10.1016/B978-0-12-811318-9.00027-2
Karasan, A. & Gaygısız, E. (2022). Volatility Prediction and Risk Management: An SVR-GARCH. SSRN. http://dx.doi.org/10.2139/ssrn.4285524
DOI: https://doi.org/10.2139/ssrn.4285524
Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using hybrid neural network models. Expert Systems with Applications, 41(5), 2437-2442. https://doi.org/10.1016/j.eswa.2013.09.043
DOI: https://doi.org/10.1016/j.eswa.2013.09.043
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974
DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Bildirici, M., & Ersin, Ö. (2014). Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns. The Scientific World Journal, 2014, 497941. https://doi.org/10.1155/2014/497941
DOI: https://doi.org/10.1155/2014/497941
Monfared, S. A., & Enke, D. (2014). Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model. Procedia Computer Science, 36, 246-253. https://doi.org/10.1016/j.procs.2014.09.087
DOI: https://doi.org/10.1016/j.procs.2014.09.087
Rodríguez - Vargas, A. (2020). Forecasting Costa Rica inflation with machine learning methods. Latin American Journal of Central Banking, 1,(1-4), 100012. https://doi.org/10.1016/j.latcb.2020.100012
DOI: https://doi.org/10.1016/j.latcb.2020.100012
Roghani, A. (2016). Artificial Neural Networks: Applications in Financial Forecasting. CreateSpace Independent Publishing Platform.
Satria, D. (2023). Predicting Banking Stock Prices Using RNN, LSTM, and GRU Approach. Applied Computer Science, 19(1) 82-84. https://doi.org/10.35784/acs-2023-06
DOI: https://doi.org/10.35784/acs-2023-06
Scholkopf, B., Smola, A. (2018). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning series. MIT Press.
DOI: https://doi.org/10.7551/mitpress/4175.001.0001
Shen, Z., Wan, Q., & Leatham, D. J. (2021). Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN. Risk and Financial Management, 14(7), 337. https://doi.org/10.3390/jrfm14070337
DOI: https://doi.org/10.3390/jrfm14070337
Sun, H., & Yu, B. (2020). Forecasting Financial Returns Volatility: A GARCH-SVR Model. Computational Economics, 55, 451–47. https://doi.org/10.1007/s10614-019-09896-w
DOI: https://doi.org/10.1007/s10614-019-09896-w
Verma, S. (2021). Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach. Intelligent Systems in Accounting, Finance and Management, 28(2), 130–142. https://doi.org/10.1002/isaf.1489
DOI: https://doi.org/10.1002/isaf.1489
Wang, L. (2005). Support Vector Machines: Theory and Applications. In Wang, L. (ed.), Studies in Fuzziness and Soft Computing. ( vol. 177). Springer.
DOI: https://doi.org/10.1007/b95439
Y, X., Wen, X., & Y, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems, 12721. https://doi.org/10.1117/12.2683400
Yi, X., Wen, X., & Yin, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems (ISCAIS 2023), 12721. https://doi.org/10.1117/12.2683400
DOI: https://doi.org/10.1117/12.2683400
Yamaka, W., Srichaikul, W., & Maneejuk, P. (2021). Support Vector Machine-Based GARCH-type Models: Evidence from ASEAN-5 Stock Markets. In: Ngoc Thach, N., Kreinovich, V., Trung, N.D. (eds), Data Science for Financial Econometrics. Studies in Computational Intelligence ( vol. 898, pp. 369-381). Springer, https://doi.org/10.1007/978-3-030-48853-6_26
DOI: https://doi.org/10.1007/978-3-030-48853-6_26
Zahid, M., Iqbal, F., Koutmos, D. (2022). Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning. Risks, 10(12), 237. https://doi.org/10.3390/risks10120237
DOI: https://doi.org/10.3390/risks10120237
Zhang, C., Zhang, Y., Cucuringu, M., & Qian, Z. (2022). Volatility forecasting with machine learning and intraday commonality. arXiv. https://doi.org/10.48550/arXiv.2202.08962
DOI: https://doi.org/10.2139/ssrn.4022147
Zhang, G. & Qian, G. (2021). Out-of-sample realized volatility forecasting: does the support vector regression compete combination methods. Applied Economics, 53(19), 2192-2205. https://doi.org/10.1080/00036846.2020.1856326
DOI: https://doi.org/10.1080/00036846.2020.1856326