References
Baghizadeh, M., Maghooli, K., Farokhi, F., & Dabanloo, N. J. (2020). A new emotion detection algorithm using extracted features of the different time-series generated from ST intervals Poincaré map. Biomedical Signal Processing and Control, 59. https://doi.org/10.1016/j.bspc.2020.101902
Bong, S. Z., Murugappan, M., & Yaacob, S. (2012, 2012//). Analysis of Electrocardiogram (ECG) Signals for Human Emotional Stress Classification. Trends in Intelligent Robotics, Automation, and Manufacturing, Berlin, Heidelberg.
Bulagang, A. F., Weng, N. G., Mountstephens, J., & Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20. https://doi.org/10.1016/j.imu.2020.100363
Burby, J. W., Tang, Q., & Maulik, R. (2021). Fast neural Poincaré maps for toroidal magnetic fields. Plasma Physics and Controlled Fusion, 63(2), 024001. https://doi.org/10.1088/1361-6587/abcbaa
Ferdinando, H., Seppänen, T., & Alasaarela, E. (2016, 5-7 Oct. 2016). Comparing features from ECG pattern and HRV analysis for emotion recognition system. 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
Goshvarpour, A., Abbasi, A., & Goshvarpour, A. (2017). Indices from lagged poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas Phys Eng Sci Med, 40(2), 277-287. https://doi.org/10.1007/s13246-017-0530-x
Guzik, P., Piskorski, J., Krauze, T., Wykretowicz, A., & Wysocki, H. (2006). Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech (Berl), 51(4), 272-275. https://doi.org/10.1515/BMT.2006.054
Hoshi, R. A., Pastre, C. M., Vanderlei, L. C., & Godoy, M. F. (2013). Poincare plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci, 177(2), 271-274. https://doi.org/10.1016/j.autneu.2013.05.004
K, T., Ab. Aziz, N. A., Emerson Raja, J., Hossen, J., & M. Z. H, J. (2022). A Systematic Review on Emotion Recognition System Using Physiological Signals: Data Acquisition and Methodology. Emerging Science Journal, 6(5), 1167-1198. https://doi.org/10.28991/esj-2022-06-05-017
Kim, J., & Andre, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell, 30(12), 2067-2083. https://doi.org/10.1109/TPAMI.2008.26
Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42(3), 419-427. https://doi.org/10.1007/BF02344719
Krüger, S., Schafföner, M., Katz, M., Andelic, E., & Wendemuth, A. (2005). Speech recognition with support vector machines in a hybrid system. https://doi.org/10.21437/Interspeech.2005-237
Liu, L., Luo, D., Liu, M., Zhong, J., Wei, Y., & Sun, L. (2015). A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs. Mathematical Problems in Engineering, 2015, 1-8. https://doi.org/10.1155/2015/987189
Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209-237. https://doi.org/10.1080/02699930802204677
Mikuckas, A., Mikuckiene, I., Venckauskas, A., Kazanavicius, E., Lukas, R., & Plauska, I. (2014). Emotion Recognition in Human Computer Interaction Systems. Elektronika ir Elektrotechnika, 20(10). https://doi.org/10.5755/j01.eee.20.10.8878
Moharreri, S., Dabanloo, N. J., & Maghooli, K. (2018). Modeling the 2D space of emotions based on the poincare plot of heart rate variability signal. Biocybernetics and Biomedical Engineering, 38(4), 794-809. https://doi.org/10.1016/j.bbe.2018.07.001
Park, S., & Kim, K. (2011). Physiological reactivity and facial expression to emotion-inducing films in patients with schizophrenia. Arch Psychiatr Nurs, 25(6), e37-47. https://doi.org/10.1016/j.apnu.2011.08.001
Patlar Akbulut, F., Perros, H. G., & Shahzad, M. (2020). Bimodal affect recognition based on autoregressive hidden Markov models from physiological signals. Comput Methods Programs Biomed, 195, 105571. https://doi.org/10.1016/j.cmpb.2020.105571
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2012). A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Transactions on Affective Computing, 3(1), 42-55. https://doi.org/10.1109/t-affc.2011.25
Stadermann, J., & Rigoll, G. (2004). A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition Interspeech 2004,
Wang, B., Liu, D., Gao, X., Luo, Y., & Xi, J. (2022). Three-Dimensional Poincaré Plot Analysis for Heart Rate Variability. Complexity, 2022, 1-9. https://doi.org/10.1155/2022/3880047
Wiem, M., & Lachiri, Z. (2017). Emotion Classification in Arousal Valence Model using MAHNOB-HCI Database. International Journal of Advanced Computer Science and Applications, 8. https://doi.org/10.14569/IJACSA.2017.080344
Zhu, J., Ji, L., & Liu, C. (2019). Heart rate variability monitoring for emotion and disorders of emotion. Physiol Meas, 40(6), 064004. https://doi.org/10.1088/1361-6579/ab1887