EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT
Article Sidebar
Open full text
Issue Vol. 20 No. 1 (2024)
-
A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Malek M. AL-NAWASHI , Obaida M. AL-HAZAIMEH, Mutaz Kh. KHAZAALEH1–16
-
A STUDY ON AN AR-BASED CIRCUIT PRACTICE
Hae Chan Na, Yoon Sang Kim17-27
-
ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING
Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM28–55
-
THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES
Katarzyna KUREK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK56-71
-
OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT
Ghania ZIDANI, Djalal DJARAH, Abdslam BENMAKHLOUF, Laid KHETTACHE72-84
-
OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS.
Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa85–105
-
EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT
Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI106-121
-
APPLICATION OF THERMAL IMAGING CAMERAS FOR SMARTPHONE: SEEK THERMAL COMPACT PRO AND FLIR ONE PRO FOR HUMAN STRESS DETECTION – COMPARISON AND STUDY
Katarzyna BARAN122-138
-
FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS
Alexandru Marius OBRETIN, Andreea Alina CORNEA139-156
-
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES
Jarelh Galdos, Nikolai Lopez, Angie Medina, Jorge Huarca, Jorge Rendulich, Erasmo Sulla157-172
-
KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL
Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG173-188
-
ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec189-207
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The best emotion recognition system based on physiological signals with a simple operatory should have higher accuracy and fast response speed. This paper aims to develop an emotion recognition system using a novel hybrid system based on Hidden Markov Model and Poincare plot. For this purpose, an electrocardiogram from the MAHNOB-HCI database was used. A novel feature extraction from a hybrid system combining Hidden Markov Model and Poincare plot was presented. The authors extracted time and frequency domain features from heart rate variability, and used two central hybrid systems, the Support Vector Machine/ Hidden Markov Model and the Hidden Markov Model/ Poincare Plot. Finally, the support vector machine was used as a classifier to classify emotions into positive and negative. The proposed method showed a classification accuracy of 95.02 ± 1.97 % overall. Also, the computing time of the method is around 163 milliseconds. The key of this paper is in the use of hybrid machines to improve accuracy without high computation time. This method can be used as a real-time system due to the low computation time and can be developed in many fields, such as medical examination and security systems.
Keywords:
References
Bong, S. Z., Murugappan, M., & Yaacob, S. (2012, 2012//). Analysis of Electrocardiogram (ECG) Signals for Human Emotional Stress Classification. Trends in Intelligent Robotics, Automation, and Manufacturing, Berlin, Heidelberg.
Bulagang, A. F., Weng, N. G., Mountstephens, J., & Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20. https://doi.org/10.1016/j.imu.2020.100363
Burby, J. W., Tang, Q., & Maulik, R. (2021). Fast neural Poincaré maps for toroidal magnetic fields. Plasma Physics and Controlled Fusion, 63(2), 024001. https://doi.org/10.1088/1361-6587/abcbaa
Ferdinando, H., Seppänen, T., & Alasaarela, E. (2016, 5-7 Oct. 2016). Comparing features from ECG pattern and HRV analysis for emotion recognition system. 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
Goshvarpour, A., Abbasi, A., & Goshvarpour, A. (2017). Indices from lagged poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas Phys Eng Sci Med, 40(2), 277-287. https://doi.org/10.1007/s13246-017-0530-x
Guzik, P., Piskorski, J., Krauze, T., Wykretowicz, A., & Wysocki, H. (2006). Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech (Berl), 51(4), 272-275. https://doi.org/10.1515/BMT.2006.054
Hoshi, R. A., Pastre, C. M., Vanderlei, L. C., & Godoy, M. F. (2013). Poincare plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci, 177(2), 271-274. https://doi.org/10.1016/j.autneu.2013.05.004
K, T., Ab. Aziz, N. A., Emerson Raja, J., Hossen, J., & M. Z. H, J. (2022). A Systematic Review on Emotion Recognition System Using Physiological Signals: Data Acquisition and Methodology. Emerging Science Journal, 6(5), 1167-1198. https://doi.org/10.28991/esj-2022-06-05-017
Kim, J., & Andre, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell, 30(12), 2067-2083. https://doi.org/10.1109/TPAMI.2008.26
Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42(3), 419-427. https://doi.org/10.1007/BF02344719
Krüger, S., Schafföner, M., Katz, M., Andelic, E., & Wendemuth, A. (2005). Speech recognition with support vector machines in a hybrid system. https://doi.org/10.21437/Interspeech.2005-237
Liu, L., Luo, D., Liu, M., Zhong, J., Wei, Y., & Sun, L. (2015). A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs. Mathematical Problems in Engineering, 2015, 1-8. https://doi.org/10.1155/2015/987189
Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209-237. https://doi.org/10.1080/02699930802204677
Mikuckas, A., Mikuckiene, I., Venckauskas, A., Kazanavicius, E., Lukas, R., & Plauska, I. (2014). Emotion Recognition in Human Computer Interaction Systems. Elektronika ir Elektrotechnika, 20(10). https://doi.org/10.5755/j01.eee.20.10.8878
Moharreri, S., Dabanloo, N. J., & Maghooli, K. (2018). Modeling the 2D space of emotions based on the poincare plot of heart rate variability signal. Biocybernetics and Biomedical Engineering, 38(4), 794-809. https://doi.org/10.1016/j.bbe.2018.07.001
Park, S., & Kim, K. (2011). Physiological reactivity and facial expression to emotion-inducing films in patients with schizophrenia. Arch Psychiatr Nurs, 25(6), e37-47. https://doi.org/10.1016/j.apnu.2011.08.001
Patlar Akbulut, F., Perros, H. G., & Shahzad, M. (2020). Bimodal affect recognition based on autoregressive hidden Markov models from physiological signals. Comput Methods Programs Biomed, 195, 105571. https://doi.org/10.1016/j.cmpb.2020.105571
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2012). A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Transactions on Affective Computing, 3(1), 42-55. https://doi.org/10.1109/t-affc.2011.25
Stadermann, J., & Rigoll, G. (2004). A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition Interspeech 2004,
Wang, B., Liu, D., Gao, X., Luo, Y., & Xi, J. (2022). Three-Dimensional Poincaré Plot Analysis for Heart Rate Variability. Complexity, 2022, 1-9. https://doi.org/10.1155/2022/3880047
Wiem, M., & Lachiri, Z. (2017). Emotion Classification in Arousal Valence Model using MAHNOB-HCI Database. International Journal of Advanced Computer Science and Applications, 8. https://doi.org/10.14569/IJACSA.2017.080344
Zhu, J., Ji, L., & Liu, C. (2019). Heart rate variability monitoring for emotion and disorders of emotion. Physiol Meas, 40(6), 064004. https://doi.org/10.1088/1361-6579/ab1887
Article Details
Abstract views: 605
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
