IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
A mathematical model is presented for investigating the temperature field caused by the rotary friction welding of dissimilar metals. For this purpose, an axisymmetric, nonlinear, boundary value problem of heat conduction is formulated with allowance for the frictional heating of two cylindrical specimens of finite length made of Al 6061 aluminium alloy and 304 stainless steel. The thermo-physical properties of materials change with increasing temperature. It was assumed that the coefficient of friction does not depend on the temperature. The mechanism of heat generation due to friction on the contact surface with the temperature field of samples is considered. The boundary problem of heat conduction was reduced to the set of nonlinear ordinary differential equations at time t relative to the values of temperature T at the finite elements nodes. The numerical solution of the problem was obtained with the inverse 2nd order differentiation method implemented in COMSOL FEM system (finite element method), with time step ∆t=0.1 (s). The influence of various values of friction coefficient is presented.
Keywords:
References
Simoes, F., &Rodrigues, D. M. (2014). Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: Literature review, experimental results and empirical analysis. Materials & Design, 59, 344–351. https://doi.org/10.1016/j.matdes.2013.12.038 DOI: https://doi.org/10.1016/j.matdes.2013.12.038
Uday, M. B., Ahmad-Fauzi, M.N., Zuhailawati, H., & Ismail, A.B. (2012). Thermal analysis of friction welding process in relation to the welding of YSZ–alumina composite and 6061 aluminum alloy. Applied Surface Science, 258(20), 8264–8272. https://doi.org/10.1016/j.apsusc.2012.05.035 DOI: https://doi.org/10.1016/j.apsusc.2012.05.035
Taban, E., Gould, J.E., & Lippold, J.C. (2010). Dissimilar friction welding of 6061–T6 aluminum and AISI 1018 steel: properties and mi-crostructural characterization. Materials & Design, 31(5), 2305–2311. . https://doi.org/10.1016/j.matdes.2009.12.010 DOI: https://doi.org/10.1016/j.matdes.2009.12.010
Maalekian, M. (2007). Friction welding – critical assessment of literature. Science and Technology of Welding and Joining, 12(8), 738–759. https://doi.org/10.1179/174329307X249333 DOI: https://doi.org/10.1179/174329307X249333
Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H. & Ismail, A. B. (2010) Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534–558. https://doi.org/10.1179/136217110X12785889550064 DOI: https://doi.org/10.1179/136217110X12785889550064
Gooch, T. G. (1973) Friction welding, international metallurgical reviews, 18(1), 42. DOI: https://doi.org/10.1179/imtlr.1973.18.1.42
Bhamji, I., Preuss, M., Threadgill, P. L., & Addison, A. C. (2011) Solid state joining of metals by linear friction welding: a literature review. Materials Science and Technology, 27(1), 2–12. https://doi.org/10.1179/026708310X520510 DOI: https://doi.org/10.1179/026708310X520510
Pinheiro, M.A., & Bracarense, A.Q. (2019). Influence of initial contact geometry on mechanical properties in friction welding of dissimilar materials aluminum 6351 T6 and SAE 1020 Steel. Advances in Materials Science and Engineering. 1759484. https://doi.org/10.1155/2019/1759484 DOI: https://doi.org/10.1155/2019/1759484
Senkathir S., Siddharth V.B. (2020). Friction welding of dissimilar metals (aluminium AL 6061 T6 and stainless steel AISI 304). IOP Conf. Ser.: Mater. Sci. Eng. 912: no. 032043. DOI: https://doi.org/10.1088/1757-899X/912/3/032043
Wang, G., Li, J., Wang, W., Xiong, J., & Zhang, F. (2018). Study on the effect of energy-input on the joint mechanical properties of rotary friction-welding. Metals, 8(11), 908. https://doi.org/10.3390/met8110908 DOI: https://doi.org/10.3390/met8110908
Sasmito, A., Ilman, M. N., Iswanto, P. T., & Muslih, R. (2022). Effect of rotational speed on static and fano.tigue properties of rotary friction welded dissimilar AA7075/AA5083 aluminium alloy joints. Metals, 12(1): 99. https://doi.org/10.3390/met12010099 DOI: https://doi.org/10.3390/met12010099
Li, W., Vairis, A., Preuss, M., & Ma, T. (2016) Linear and rotary friction welding review. International Materials Reviews. 61(2), 71–100. https://doi.org/10.1080/09506608.2015.1109214 DOI: https://doi.org/10.1080/09506608.2015.1109214
Rajak, D. K., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020) Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34(24), 2613–2637. https://doi.org/10.1080/01694243.2020.1780716 DOI: https://doi.org/10.1080/01694243.2020.1780716
Shamanian, M., Mostaan, H., Safari, M., & Szpunar, J. A. (2016) EBSD study on grain boundary and microtexture evolutions during friction stir processing of A413 cast aluminum alloy. Journal of Materials Engineering and Performance, 25(7), 2824–2835. https://doi.org/10.1007/s11665-016-2141- 1 DOI: https://doi.org/10.1007/s11665-016-2141-1
Thapliyal, S., & Dwivedi, D. K. (2020) Fatigue performance of friction stir welded Al2024 alloy in a different corrosive environment. Materialwissenschaft und Werkstofftechnik, 51,(2), 174–180. https://doi.org/10.1002/mawe.201800171 DOI: https://doi.org/10.1002/mawe.201800171
Ross, K., & Sorensen, C. (2013). Advances in temperature control for FSP. In Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (eds) Friction Stir Welding and Processing VII, (pp. 301–310). Springer. https://doi.org/10.1007/978-3-319-48108-1_31 DOI: https://doi.org/10.1007/978-3-319-48108-1_31
Chen, Z. W., & Cui, S. (2008) On the forming mechanism of banded structures in aluminium alloy friction stir welds. Scripta Materialia, 58(5), 417–420. https://doi.org/10.1016/j.scriptamat.2007.10.026 DOI: https://doi.org/10.1016/j.scriptamat.2007.10.026
Mattie, A. A., Ezdeen, S. Y., & Khidhir, G. I. (2023) Optimization of parameters in rotary friction welding process of dissimilar austenitic and ferritic stainless steel using finite element analysis. Advances in Mechanical Engineering, 15(7). https://doi.org/10.1177/16878132231186015 DOI: https://doi.org/10.1177/16878132231186015
Ghias, S. A., Vijaya, R. B., Elanchezhian, C., Siddhartha, D., & Ramanan, N. (2019) Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium–copper. Materials Today: Proceedings, 16(2), 766–775. https://doi.org/10.1016/j.matpr.2019.05.157 DOI: https://doi.org/10.1016/j.matpr.2019.05.157
Mehta, K. P. (2019) A review on friction-based joining of dissimilar aluminum–steel joints. Journal of Materials Research, 34, 78–96. https://doi.org/10.1557/jmr.2018.332 DOI: https://doi.org/10.1557/jmr.2018.332
Livingston, R. V. (2019) Comparison of heat generation models in finite element analysis of friction welding. PhD Tesis. Brigham Young University.
Łukaszewicz, A. (2018) Nonlinear numerical model of heat generation in the rotary friction welding. Journal of Friction and Wear, 39(6), 476–482. https://doi.org/10.3103/S1068366618060089 DOI: https://doi.org/10.3103/S1068366618060089
Łukaszewicz A. (2019) Temperature field in the contact zone in the course of rotary friction welding of metals. Materials Science, 55(1), 39–45. https://doi.org/10.1007/s11003-019-00249-4 DOI: https://doi.org/10.1007/s11003-019-00249-4
COMSOL Multiphysics v. 5.2a. www.comsol.com. COMSOL AB, Stockholm, Sweden.
Rothman M.F. (1988) High-Temperature Property Data: Ferrous Alloys. ASM Int., Ohio.
Bouarroudj, E., Chikh, S., Abdi, S., & Miroud, D. (2017) Thermal analysis during a rotational friction welding. Applied Thermal Engineering, 110, 1543–1553. https://doi.org/10.1016/j.applthermaleng.2016.09.067 DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.067
Article Details
Abstract views: 642
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
