IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Operation, Wiejska 45 c, 15-351 Białystok (Poland)
https://orcid.org/0000-0003-0373-4803
Jerzy JÓZWIK
j.jozwik@pollub.pl(Poland)
Kamil CYBUL
Lublin University of Technology, Doctoral School at the Lublin University of Technology, Nadbystrzycka 38 B/406, 20-618 Lublin (Poland)
Abstract
A mathematical model is presented for investigating the temperature field caused by the rotary friction welding of dissimilar metals. For this purpose, an axisymmetric, nonlinear, boundary value problem of heat conduction is formulated with allowance for the frictional heating of two cylindrical specimens of finite length made of Al 6061 aluminium alloy and 304 stainless steel. The thermo-physical properties of materials change with increasing temperature. It was assumed that the coefficient of friction does not depend on the temperature. The mechanism of heat generation due to friction on the contact surface with the temperature field of samples is considered. The boundary problem of heat conduction was reduced to the set of nonlinear ordinary differential equations at time t relative to the values of temperature T at the finite elements nodes. The numerical solution of the problem was obtained with the inverse 2nd order differentiation method implemented in COMSOL FEM system (finite element method), with time step ∆t=0.1 (s). The influence of various values of friction coefficient is presented.
Supporting Agencies
Keywords:
friction welding, friction coefficient, finite element method, frictional heatingReferences
Simoes, F., &Rodrigues, D. M. (2014). Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: Literature review, experimental results and empirical analysis. Materials & Design, 59, 344–351. https://doi.org/10.1016/j.matdes.2013.12.038
DOI: https://doi.org/10.1016/j.matdes.2013.12.038
Google Scholar
Uday, M. B., Ahmad-Fauzi, M.N., Zuhailawati, H., & Ismail, A.B. (2012). Thermal analysis of friction welding process in relation to the welding of YSZ–alumina composite and 6061 aluminum alloy. Applied Surface Science, 258(20), 8264–8272. https://doi.org/10.1016/j.apsusc.2012.05.035
DOI: https://doi.org/10.1016/j.apsusc.2012.05.035
Google Scholar
Taban, E., Gould, J.E., & Lippold, J.C. (2010). Dissimilar friction welding of 6061–T6 aluminum and AISI 1018 steel: properties and mi-crostructural characterization. Materials & Design, 31(5), 2305–2311. . https://doi.org/10.1016/j.matdes.2009.12.010
DOI: https://doi.org/10.1016/j.matdes.2009.12.010
Google Scholar
Maalekian, M. (2007). Friction welding – critical assessment of literature. Science and Technology of Welding and Joining, 12(8), 738–759. https://doi.org/10.1179/174329307X249333
DOI: https://doi.org/10.1179/174329307X249333
Google Scholar
Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H. & Ismail, A. B. (2010) Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534–558. https://doi.org/10.1179/136217110X12785889550064
DOI: https://doi.org/10.1179/136217110X12785889550064
Google Scholar
Gooch, T. G. (1973) Friction welding, international metallurgical reviews, 18(1), 42.
DOI: https://doi.org/10.1179/imtlr.1973.18.1.42
Google Scholar
Bhamji, I., Preuss, M., Threadgill, P. L., & Addison, A. C. (2011) Solid state joining of metals by linear friction welding: a literature review. Materials Science and Technology, 27(1), 2–12. https://doi.org/10.1179/026708310X520510
DOI: https://doi.org/10.1179/026708310X520510
Google Scholar
Pinheiro, M.A., & Bracarense, A.Q. (2019). Influence of initial contact geometry on mechanical properties in friction welding of dissimilar materials aluminum 6351 T6 and SAE 1020 Steel. Advances in Materials Science and Engineering. 1759484. https://doi.org/10.1155/2019/1759484
DOI: https://doi.org/10.1155/2019/1759484
Google Scholar
Senkathir S., Siddharth V.B. (2020). Friction welding of dissimilar metals (aluminium AL 6061 T6 and stainless steel AISI 304). IOP Conf. Ser.: Mater. Sci. Eng. 912: no. 032043.
DOI: https://doi.org/10.1088/1757-899X/912/3/032043
Google Scholar
Wang, G., Li, J., Wang, W., Xiong, J., & Zhang, F. (2018). Study on the effect of energy-input on the joint mechanical properties of rotary friction-welding. Metals, 8(11), 908. https://doi.org/10.3390/met8110908
DOI: https://doi.org/10.3390/met8110908
Google Scholar
Sasmito, A., Ilman, M. N., Iswanto, P. T., & Muslih, R. (2022). Effect of rotational speed on static and fano.tigue properties of rotary friction welded dissimilar AA7075/AA5083 aluminium alloy joints. Metals, 12(1): 99. https://doi.org/10.3390/met12010099
DOI: https://doi.org/10.3390/met12010099
Google Scholar
Li, W., Vairis, A., Preuss, M., & Ma, T. (2016) Linear and rotary friction welding review. International Materials Reviews. 61(2), 71–100. https://doi.org/10.1080/09506608.2015.1109214
DOI: https://doi.org/10.1080/09506608.2015.1109214
Google Scholar
Rajak, D. K., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020) Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34(24), 2613–2637. https://doi.org/10.1080/01694243.2020.1780716
DOI: https://doi.org/10.1080/01694243.2020.1780716
Google Scholar
Shamanian, M., Mostaan, H., Safari, M., & Szpunar, J. A. (2016) EBSD study on grain boundary and microtexture evolutions during friction stir processing of A413 cast aluminum alloy. Journal of Materials Engineering and Performance, 25(7), 2824–2835. https://doi.org/10.1007/s11665-016-2141- 1
DOI: https://doi.org/10.1007/s11665-016-2141-1
Google Scholar
Thapliyal, S., & Dwivedi, D. K. (2020) Fatigue performance of friction stir welded Al2024 alloy in a different corrosive environment. Materialwissenschaft und Werkstofftechnik, 51,(2), 174–180. https://doi.org/10.1002/mawe.201800171
DOI: https://doi.org/10.1002/mawe.201800171
Google Scholar
Ross, K., & Sorensen, C. (2013). Advances in temperature control for FSP. In Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (eds) Friction Stir Welding and Processing VII, (pp. 301–310). Springer. https://doi.org/10.1007/978-3-319-48108-1_31
DOI: https://doi.org/10.1007/978-3-319-48108-1_31
Google Scholar
Chen, Z. W., & Cui, S. (2008) On the forming mechanism of banded structures in aluminium alloy friction stir welds. Scripta Materialia, 58(5), 417–420. https://doi.org/10.1016/j.scriptamat.2007.10.026
DOI: https://doi.org/10.1016/j.scriptamat.2007.10.026
Google Scholar
Mattie, A. A., Ezdeen, S. Y., & Khidhir, G. I. (2023) Optimization of parameters in rotary friction welding process of dissimilar austenitic and ferritic stainless steel using finite element analysis. Advances in Mechanical Engineering, 15(7). https://doi.org/10.1177/16878132231186015
DOI: https://doi.org/10.1177/16878132231186015
Google Scholar
Ghias, S. A., Vijaya, R. B., Elanchezhian, C., Siddhartha, D., & Ramanan, N. (2019) Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium–copper. Materials Today: Proceedings, 16(2), 766–775. https://doi.org/10.1016/j.matpr.2019.05.157
DOI: https://doi.org/10.1016/j.matpr.2019.05.157
Google Scholar
Mehta, K. P. (2019) A review on friction-based joining of dissimilar aluminum–steel joints. Journal of Materials Research, 34, 78–96. https://doi.org/10.1557/jmr.2018.332
DOI: https://doi.org/10.1557/jmr.2018.332
Google Scholar
Livingston, R. V. (2019) Comparison of heat generation models in finite element analysis of friction welding. PhD Tesis. Brigham Young University.
Google Scholar
Łukaszewicz, A. (2018) Nonlinear numerical model of heat generation in the rotary friction welding. Journal of Friction and Wear, 39(6), 476–482. https://doi.org/10.3103/S1068366618060089
DOI: https://doi.org/10.3103/S1068366618060089
Google Scholar
Łukaszewicz A. (2019) Temperature field in the contact zone in the course of rotary friction welding of metals. Materials Science, 55(1), 39–45. https://doi.org/10.1007/s11003-019-00249-4
DOI: https://doi.org/10.1007/s11003-019-00249-4
Google Scholar
COMSOL Multiphysics v. 5.2a. www.comsol.com. COMSOL AB, Stockholm, Sweden.
Google Scholar
Rothman M.F. (1988) High-Temperature Property Data: Ferrous Alloys. ASM Int., Ohio.
Google Scholar
Bouarroudj, E., Chikh, S., Abdi, S., & Miroud, D. (2017) Thermal analysis during a rotational friction welding. Applied Thermal Engineering, 110, 1543–1553. https://doi.org/10.1016/j.applthermaleng.2016.09.067
DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.067
Google Scholar
Authors
Andrzej ŁUKASZEWICZBialystok University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Operation, Wiejska 45 c, 15-351 Białystok Poland
https://orcid.org/0000-0003-0373-4803
Authors
Kamil CYBULLublin University of Technology, Doctoral School at the Lublin University of Technology, Nadbystrzycka 38 B/406, 20-618 Lublin Poland
Statistics
Abstract views: 430PDF downloads: 145
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL, PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL, MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 20 No. 2 (2024)
Similar Articles
- Damian KRASKA, Tomasz TRZEPIECIŃSKI, FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS , Applied Computer Science: Vol. 14 No. 3 (2018)
- Kuba ROSŁANIEC, ANALYSIS OF THE EFFECT OF PROJECTILE IMPACT ANGLE ON THE PUNCTURE OF A STEEL PLATE USING THE FINITE ELEMENT METHOD IN ABAQUS SOFTWARE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa, OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. , Applied Computer Science: Vol. 20 No. 1 (2024)
- Jack OLESEN, Carl-Emil Houmøller PEDERSEN, Markus Germann KNUDSEN, Sandra TOFT, Vladimir NEDBAILO, Johan PRISAK, Izabela Ewa NIELSEN, Subrata SAHA, JOINT EFFECT OF FORECASTING AND LOT-SIZING METHOD ON COST MINIMIZATION OBJECTIVE OF A MANUFACTURER: A CASE STUDY , Applied Computer Science: Vol. 16 No. 4 (2020)
- Stanisław SKULIMOWSKI, Jerzy MONTUSIEWICZ, Marcin BADUROWICZ, ENHANCING THE EFFICIENCY OF THE LEVENSHTEIN DISTANCE BASED HEURISTIC METHOD OF ARRANGING 2D APICTORIAL ELEMENTS FOR INDUSTRIAL APPLICATIONS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK, NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES , Applied Computer Science: Vol. 13 No. 3 (2017)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI, COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES , Applied Computer Science: Vol. 19 No. 4 (2023)
- Stanisław BŁAWUCKI, Kazimierz ZALESKI, CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD , Applied Computer Science: Vol. 13 No. 1 (2017)
You may also start an advanced similarity search for this article.