COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS
Article Sidebar
Open full text
Issue Vol. 19 No. 4 (2023)
-
ENHANCING THE EFFICIENCY OF THE LEVENSHTEIN DISTANCE BASED HEURISTIC METHOD OF ARRANGING 2D APICTORIAL ELEMENTS FOR INDUSTRIAL APPLICATIONS
Stanisław SKULIMOWSKI, Jerzy MONTUSIEWICZ, Marcin BADUROWICZ1-13
-
AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS
Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA14-25
-
COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS
Tomasz SEDERYN, Małgorzata SKAWIŃSKA26-38
-
IMPROVING MATERIAL REQUIREMENTS PLANNING THROUGH WEB-BASED: A CASE STUDY THAILAND SMEs
Pornsiri KHUMLA, Kamthorn SARAWAN39-50
-
PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY
Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL51-67
-
IDENTIFYING THE POTENTIAL OF UNMANNED AERIAL VEHICLE ROUTING FOR BLOOD DISTRIBUTION IN EMERGENCY REQUESTS
Janani DEWMINI, W Madushan FERNANDO, Izabela Iwa NIELSEN, Grzegorz BOCEWICZ, Amila THIBBOTUWAWA, Zbigniew BANASZAK68-87
-
EFFICIENCY COMPARISON OF NETWORKS IN HANDWRITTEN LATIN CHARACTERS RECOGNITION WITH DIACRITICS
Edyta ŁUKASIK, Wiktor FLIS88-102
-
THE EFFECT OF INFORMATION TECHNOLOGY AND ENTREPRENEURSHIP ON THE E-SERVICES QUALITY THAT HAVE AN IMPACT ON CUSTOMER VALUE: EVIDENCE FROM INDONESIA SMEs
Ferra Arik TRIDALESTARI, Hanung Nindito PRASETYO103-120
-
IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY
Monika KULISZ, Aigerim DUISENBEKOVA, Justyna KUJAWSKA, Danira KALDYBAYEVA, Bibigul ISSAYEVA, Piotr LICHOGRAJ, Wojciech CEL121-135
-
COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES
Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI136-150
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
PEM fuel cells are one of the most promising sources of electrical energy and also have interesting properties. This research is purely theoretical and based on ANSYS Fluent software. Thus, the next step of the research should be the comparison of the solutions to other models and experimental results. The PEM fuel cell can be used as an energy source in the near future in a much more common way, although there are few modifications required, such as increasing efficiency and reducing production costs.
In general, a three-dimensional steady-state model of the polymer electrolyte membrane fuel cell implemented in Fluent was used to study a single channel flow inside such a PEMFC. The analysis concerns an aspect, that seems to be overlooked in this type of analysis, namely the influence of the substrate flow rate on the quality and efficiency of the chemical reaction, and thus on the value of the generated current for a given voltage. In addition, attention is also paid to the problem of the possible influence of the flow model - laminar or turbulent on the mentioned reaction rate. Such theoretical research is very useful and very much needed to design a new PEM fuel cells, utilizing Computational Fluid Dynamics (CFD) tool to statically monitor its performance for different boundary conditions.
Keywords:
References
Ahmadi, N., & Rostami, S. (2019). Enhancing the performance of polymer electrolyte membrane fuel cell by optimizing the operating parameter. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 220. https://doi.org/10.1007/s40430-019-1720-0 DOI: https://doi.org/10.1007/s40430-019-1720-0
Akhtar, N., & Kerkhof, P. (2011). Effect of channel and rib width on transport phenomena within the cathode of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(9), 5536-5549. https://doi.org/10.1016/j.ijhydene.2011.02.039 DOI: https://doi.org/10.1016/j.ijhydene.2011.02.039
Albarbar, A., & Alrweq, M. (Eds.). (2018). Proton exchange membrane fuel cells: Design, modelling and performance assessment techniques. Springer. DOI: https://doi.org/10.1007/978-3-319-70727-3
ANSYS, Ins.. (2022). Fluent Theory Guide. http://www.ansys.com
ANSYS, Ins.. (2022). Fluent Users’s Guide. http://www.ansys.com
Askaripour, H. (2019). Effect of operating conditions on the performance of a PEM fuel cell. International Journal of Heat and Mass Transfer, 144(2019), 118705. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705
Cheng, Z., Luo, L., Huang, B., & Jian, O. (2021). Effect of humidification on distribution and uniformity of reactants and water content in PEMFC. International Journal of Hydrogen Energy, 46(52), 26560-26574. https://doi.org/10.1016/j.ijhydene.2021.05.129 DOI: https://doi.org/10.1016/j.ijhydene.2021.05.129
Falcão, D. S., Gomes, P. J., Oliveira, V. B., Pinho, C., & Pinto, A. (2011). 1D and 3D numerical simulations in PEM fuel cells. International Journal of Hydrogen Energy, 36(19), 12486-12498. https://doi.org/10.1016/j.ijhydene.2011.06.133 DOI: https://doi.org/10.1016/j.ijhydene.2011.06.133
Haddad, D., Oulmi, K., Benmoussa, H., Aouachria, Z., & Youcef, S. (2015). Modeling of heat yransfer in the PEMFC: Velocity inlet and current density effect. In I. Dincer, C. Colpan, O. Kizilkan & M. Ezan (Eds.), Progress in Clean Energy (pp. 463–473). Springer. DOI: https://doi.org/10.1007/978-3-319-16709-1_33
Hinaje, M., Raël, S., Caron, J. P., & Davat, B. (2012). An innovating application of PEM fuel cell: Current source controlled by hydrogen supply. International Journal of Hydrogen Energy, 37(17), 12481-12488. https://doi.org/10.1016/j.ijhydene.2012.05.153 DOI: https://doi.org/10.1016/j.ijhydene.2012.05.153
Khalil, Y. F. (2018). Science-based framework for ensuring safe use of hydrogen as an energy carrier and anemission-free transportation fuel. Process Safety and Environmental Protection, 117, 326–340. https://doi.org/10.1016/j.psep.2018.05.011 DOI: https://doi.org/10.1016/j.psep.2018.05.011
Kim, Y. B. (2012). Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells. International Journal of Energy Research, 36(4), 509-522. https://doi.org/10.1002/er.1845 DOI: https://doi.org/10.1002/er.1845
Liu, Q., Lan, F., Chen, J., Zeng, C., & Wang, J. (2022). A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. Journal of Power Sources, 517, 230723. https://doi.org/10.1016/j.jpowsour.2021.230723 DOI: https://doi.org/10.1016/j.jpowsour.2021.230723
Liu, Y., Tu, Z., & Chan, S. H. (2022). Performance enhancement in a H2/O2 PEMFC with dual-ejector recirculation. International Journal of Hydrogen Energy, 47(25), 12698-12710. https://doi.org/10.1016/j.ijhydene.2022.02.023 DOI: https://doi.org/10.1016/j.ijhydene.2022.02.023
Pei, P., Ouyang, M., Feng, W., Lu, L., Huang, H., & Zhang, J. (2006). Hydrogen pressure drop characteristics in a fuel cell stack. International Journal of Hydrogen Energy, 31(3), 371-377. https://doi.org/10.1016/j.ijhydene.2005.08.008 DOI: https://doi.org/10.1016/j.ijhydene.2005.08.008
Qin, Z., Huo, W., Bao, Z., Tongsh, Ch., Wang, B., Du, Q., & Jiao, K. (2022) Alternating flow field design improves the performance of proton exchange membrane fuel cells. Advanced Science, 10(4), 2205305. https://doi.org/10.1002/advs.202205305 DOI: https://doi.org/10.1002/advs.202205305
Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers, 13(18), 3064. https://doi.org/10.3390/polym13183064 DOI: https://doi.org/10.3390/polym13183064
Yue-Tzu, Y., Kuo-Teng, T., & Cha’o-Kuang, Ch. (2012). The effects of the PEM fuel cell performance with the waved glow channels. Journal of Applied Mathematics, 2013, 862645. http://dx.doi.org/10.1155/2013/862645 DOI: https://doi.org/10.1155/2013/862645
Zeroual, M., Ben Moussa, H., & Tamerabet, M. (2012). Effect of gas flow velocity in the channels of consumption reactants in a fuel cell type (PEMFC). Energy Procedia, 18, 317-326. https://doi.org/10.1016/j.egypro.2012.05.043 DOI: https://doi.org/10.1016/j.egypro.2012.05.043
Zhang, J., Li, H., & Zhang, J. (2009). Effect of operating backpressure on PEM fuel cell performance. ECS Transactions, 19(31), 65-76. https://doi: 10.1149/1.3271363 DOI: https://doi.org/10.1149/1.3271363
Zhang, Y., Liu, C., Wan, Z., Yang, C., Li, S., Tu, Z., Wu, M., Chen, Y., & Zhou, W. (2021). Performance enhancement of PEM fuel cells with an additional outlet in the parallel flow field. Processes, 9(11), 2061. https://doi.org/10.3390/pr9112061 DOI: https://doi.org/10.3390/pr9112061
Article Details
Abstract views: 341
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
