References
Ahn, S. M., Chun, J. H., Hong, S., Lee, C.-K., Yoo, B., Oh, J. S., & Kim, Y.-G. (2022). The Value of Thermal Imaging for Knee Arthritis: A Single-Center Observational Study. Yonsei Medical Journal, 63(2), 141–147. https://doi.org/10.3349/ymj.2022.63.2.141
Akbar, F., Bayraktaroglu, A. E., Buddharaju, P., Da Cunha Silva, D. R., Gao, G., Grover, T., Gutierrez-Osuna, R., Jones, N. C., Mark, G., Pavlidis, I., Storer, K., Wang, Z., Wesley, A., & Zaman, S. (2019). Email makes you sweat. Examining email interruptions and stress using thermal imaging. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3290605.3300898
Anishchenko, L., & Turetzkaya, A. (2020). Improved Non-Contact Mental Stress Detection via Bioradar. 2020 International Conference on Biomedical Innovations and Applications (BIA). https://doi.org/10.1109/bia50171.2020.924492
Anusha, A., Padmaja, N., D.V.S, M., & Kumar, B.S. (2020). IOT Based Stress Detection and Health Monitoring System. HELIX, 10((2). 161-167. https://doi.org/10.29042/2020-10-2-161-164
Bara C. P., Papakostas M., Mihalcea R. (2020). A Deep Learning Approach Towards Multimodal Stress Detection. Proceedings of the AAAI-20 Workshop on Affective Content Analysis, 2020, New York, USA.
Baran K. (2021). Stress detection and monitoring based on low-cost mobile thermography. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021; Procedia Computer Science, 192, 1102-1110. https://doi.org/10.1016/j.procs.2021.08.113
Baran K. (2021). Thermal Imaging of Stress: A Review. Computational Intelligence, Information Systems and Data Mining. 2021; 95-113.
Bogomilsky, S., Hoffer, O., Shalmon, G., & Scheinowitz, M. (2022). Preliminary study of thermal density distribution and entropy analysis during cycling exercise stress test using infrared thermography. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18233-5
Campbell J.S., Mead M.N. (2022). Human Medical Thermography. CRC Press. https://doi.org/10.1201/9781003281764
Cardone, D., Perpetuini, D., Filippini, C., Spadolini, E., Mancini, L., Chiarelli, A. M., & Merla, A. (2020). Driver Stress State Evaluation by Means of Thermal Imaging: A Supervised Machine Learning Approach Based on ECG Signal. Applied Sciences, 10(16), 5673. https://doi.org/10.3390/app10165673
Cho, Y., Bianchi-Berthouze, N., & Julier, S. J. (2017). DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). https://doi.org/10.1109/acii.2017.8273639
Cho, Y., Julier, S. J., Marquardt, N., & Bianchi-Berthouze, N. (2017). Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging. Biomedical Optics Express, 8(10), 4480. https://doi.org/10.1364/BOE.8.004480
Gedam, S., & Paul, S. (2020). Automatic stress detection using wearable sensors and machine learning: A review. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). https://doi.org/10.1109/iccnt49239.2020.9225692
Germi, J. W., Mensah-Brown, K. G., Chen, H. I., & Schuster, J. M. (2022). Use of smartphone-integrated infrared thermography to monitor sympathetic dysfunction as a surgical complication. Interdisciplinary Neurosurgery, 28, 101475. https://doi.org/10.1016/j.inat.2021.101475
Gomez de Mariscal, E., Munoz-Barrutia A., de Frutos J., Gonzalez-Marcos A. P., & Ugena Martinez, A. M. (2017). Infrared Thermography Processing to Characterize Emotional Stress: A Pilot Study. 8th International Conference of Pattern Recognition Systems (ICPRS 2017). https://doi.org/10.1049/cp.2017.0148
Hallock, G. G. (2019). Dynamic infrared thermography and smartphone thermal imaging as an adjunct for preoperative, intraoperative, and postoperative perforator free flap monitoring. Plastic and. Aesthetic Research, 2019. https://doi.org/10.20517/2347-9264.2019.029
Kaga, S., & Kato, S. (2019). Extraction of useful features for stress detection using various biosignals doing mental arithmetic. 2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech) https://doi.org/10.1109/lifetech.2019.8883067
Kanazawa, T., Nakagami, G., Goto, T., Noguchi, H., Oe, M., Miyagaki, T., Hayashi, A., Sasaki, S., & Sanada, H. (2016). Use of smartphone attached mobile thermography assessing subclinical inflammation: a pilot study. Journal of Wound Care, 25(4), 177-182. https://doi.org/10/12968/jowc/2016.25.4.177
Kirimtat, A., Krejcar, O., Selamat, A., & Herrera-Viedma, E. (2020). FLIR vs SEEK thermal cameras in biomedicine: comparative diagnosis through infrared thermography. BMC Bioinformatics, 21(S2). https://doi.org/10.1186/s12859-020-3355-7
Kyriakou, K., Resch, B., Sagl, G., Petutschnig, A., Werner, C., Niederseer, D., Liedlgruber, M., Wilhelm, F., Osborne, T., & Pykett, J. (2019). Detecting moments of stress from measurements of wearable physiological sensors. Sensors, 19(17), 3805. https://doi.org/10.3390/s19173805
Liu, X., Shan, Y., Peng, M., Chen, H., & Chen, T. (2020). Human stress and StO2: database, features, and classification of emotional and physical stress. Entropy, 22(9), 962. https://doi.org/10.3390/e22090962
Liu, X., Xiao, X., Cao, R., & Chen, T. (2020, April). Evolution of facial tissue oxygen saturation and detection of human physical stress. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). https://doi.org/10.1109/ipec49694.2020.9115140
Luze, H., Nischwitz, S. P., Wurzer, P., Winter, R., Spendel, S., Kamolz, L. P., & Bjelic-Radisic, V. (2022). Assessment of Mastectomy Skin Flaps for Immediate Reconstruction with Implants via Thermal Imaging—A Suitable, Personalized Approach?. Journal of Personalized Medicine, 12(5), 740.https://doi.org/10.3390/jpm12050740
Machado Fernández, J. R., & Anishchenko, L. (2018). Mental stress detection using bioradar respiratory signals. Biomedical Signal Processing and Control, 43, 244-249. https://doi.org/10.1016/j.bspc.2018.03.006
Meshram, S., Babu, R., & Adhikari, J. (2020). Detecting Psychological Stress using Machine Learning over Social Media Interaction. 2020 5th International Conference on Communication and Electronics Systems (ICCES). https://doi.org/10.1109/iccs48766.2020.913793
Morales-Ivorra, I., Narváez, J., Gomez Vaquero, C., Nolla, J. M., Moragues Pastor, C., Grados Canovas, D., Narvaez, J. A., & Marin-López, M. A. (2022). AB1343 on the development of new disease activity scores for remote assessment of patient with rheumatoid arthritis using thermography and machine learning. Annals of the Rheumatic Diseases, 81(Suppl 1). https://doi.org/10.1136/annrheumdis-2022-eular.1567
Moran-Romero, M. A., & López-Mendoza, F. J. (2022). Postoperative Monitoring of Free Flaps Using Smartphone Thermal Imaging May Lead to Ambiguous Results: Three Case Reports. International Microsurgery Journal, 6(1). https://doi.org/10.24983/scitemed.imj.2022.00163
Nassar, A. H., Maselli, A. M., Manstein, S., Shiah, E., Slatnick, B. L., Dowlatshahi, A. S., Cauley, R., & Lee, B. T. (2021). Comparison of various modalities utilized for preoperative planning in microsurgical reconstructive surgery. Journal of Reconstructive Microsurgery, 38(03), 170-180. https://doi.org/10.1055/s-0041-1736316
Nath, R. K., & Thapliyal, H. (2021). Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Transactions on Consumer Electronics, 67(1), 30-39. https://doi.org/10.1109/tce.2021.3057806
Panicker, S. S., & Gayathri, P. (2019). A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics and Biomedical Engineering, 39(2), 444-469. https://doi.org/10.1016/j.bbw.2019.01.004
Passos, M., & Rocha, A. F. (2022). Evaluation of infrared thermography with a portable camera as a diagnostic tool for peripheral arterial disease of the lower limbs compared with color Doppler ultrasonography. Archives of Medical Sciences – Atherosclerotic Diseases, 7(1), 66–72. https://doi.org/10.5114/amsad/150716
Pereira, N., & Hallock, G. G. (2020). Smartphone thermography for lower extremity local flap perforator mapping. Journal of Reconstructive Microsurgery, 37(01), 059-066. https://doi.org/10.1055/s-0039-3402032
Qin, Q., Nakagami, G., Ohashi, Y., Dai, M., Sanada, H., & Oe, M. (2022). Development of a self-monitoring tool for diabetic foot prevention using smartphone-based thermography: Plantar thermal pattern changes and usability in the home environment. Drug Discoveries & Therapeutics, 16(4), 169-176. https://doi.org/10.5582/ddt.2022.01050
Ring, E. F. J. (2007). The historical development of temperature measurement in medicine. Infrared Physics & Technology, 49(3), 297-301. https://doi.org/10.1016/j.infrared.2006.06.029
Rodríguez-Arce, J., Lara-Flores, L., Portillo-Rodríguez, O., & Martínez-Méndez, R. (2020). Towards an anxiety and stress recognition system for academic environments based on physiological features. Computer methods and programs in biomedicine, 190, 105408. https://doi.org/10.1016/j.cmpb.2020.105408
Shanmugasundaram, G., Yazhini, S., Hemapratha, E., & Nithya, S. (2019). A comprehensive review on stress detection techniques. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). https://doi.org/10.1109/iscan.2019.8878795
Sharma, N., Dhall, A., Gedeon, T., & Goecke, R. (2013). Modeling stress using thermal facial patterns: A spatio-temporal approach. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. https://doi.org/10.1109/acii.2013.70
Sharma, S., Singh, G., & Sharma, M. (2021). A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans. Computers in Biology and Medicine, 134, 104450. https://doi.org/10.1016/j.compbiomed.2021.104450
Theuma, F., & Cassar, K. (2018). The use of smartphone-attached thermography camera in diagnosis of acute lower limb ischemia. Journal of Vascular Surgery, 67(4), 1297. https://doi.org/10.1016/j.jvs.2017.02.054
Xue, E. Y., Chandler, L. K., Viviano, S. L., & Keith, J. D. (2018). Use of FLIR ONE smartphone thermography in burn wound assessment. Annals of Plastic Surgery, 80(4). https://doi.org/10.1097/Sap.0000000000001363