Annamalai, N., & Johnson, A. (2023). Analysis and forecasting of area under cultivation of rice in India: Univariate time series approach. SN Computer Science, 4, 193. https://doi.org/10.1007/s42979-022-01604-0
DOI: https://doi.org/10.1007/s42979-022-01604-0
Ansarifar, J., Wang, L., & Archontoulis, S. V. (2021). An interaction regression model for crop yield prediction. Scientific Reports, 11, 17754. https://doi.org/10.1038/s41598-021-97221-7
DOI: https://doi.org/10.1038/s41598-021-97221-7
Yu Arkhipova, M., & Smirnov, A. I. (2020). Current trends in crop yield forecasting based on the use of econometric models. Voprosy Statistiki, 27(5), 65–75. https://doi.org/10.34023/2313-6383-2020-27-5-65-75
DOI: https://doi.org/10.34023/2313-6383-2020-27-5-65-75
Beisekenov, N. A., Anuarbekov, T. B., Sadenova, M. A., Varbanov, P. S., Klemes. J. J., & Wang, J. (2021). Machine learning model identification for forecasting of soya crop yields in Kazakhstan. 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1–6). IEEE. https://doi.org/10.23919/SpliTech52315.2021.9566376
DOI: https://doi.org/10.23919/SpliTech52315.2021.9566376
Booranawong, T., & Booranawong, A. (2017). An exponentially weighted moving average method with designed input data assignments for forecasting lime prices in Thailand. Jurnal Teknologi, 79(6), 53-60. https://doi.org/10.11113/jt.v79.10096
DOI: https://doi.org/10.11113/jt.v79.10096
Bureau of National Statistics of Kazakhstan. (2022). Statistics of agriculture. forestry. hunting and fisheries. https://stat.gov.kz/en/industries/business-statistics/stat-forrest-village-hunt-fish/
Conradt, T. (2022). Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany. International Journal of Biometeorology, 66, 2287–2300. https://doi.org/10.1007/s00484-022-02356-5
DOI: https://doi.org/10.1007/s00484-022-02356-5
Dahikar, S. S., & Rode, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach miss. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686. https://api.semanticscholar.org/CorpusID:16167655
Dharmaraja, S., Jain, V., Anjoy, P., & Chandra, H. (2020). Empirical analysis for crop yield forecasting in India. Agricultural Research, 9, 132–138. https://doi.org/10.1007/s40003-019-00413-x
DOI: https://doi.org/10.1007/s40003-019-00413-x
Duisenbekova, A., & Daniłowska, A. (2021). Assessment of food security in the east Kazakhstan region. Zeszyty Naukowe SGGW w Warszawie, 21(3), 4–13. https://doi.org/10.22630/PRS.2021.21.3.9
DOI: https://doi.org/10.22630/PRS.2021.21.3.9
Fan, C., Cao, P. G., Yang, T. J., & Fu, H. L. (2016). Research on the prediction model of grain yield based on the ARIMA method. 2015 4th International Conference on Sensors. Measurement and Intelligent Materials (ICSMIM 2015) (pp. 454–458). Atlantis Press. https://doi.org/10.2991/icsmim-15.2016.84
DOI: https://doi.org/10.2991/icsmim-15.2016.84
Guo, W. W., & Xue, H. (2014). Crop yield forecasting using artificial neural networks: a comparison between spatial and temporal models. Mathematical Problems in Engineering, 2014, 857865. https://doi.org/10.1155/2014/857865
DOI: https://doi.org/10.1155/2014/857865
Hemavathi, M., & Prabakaran, K. (2018). ARIMA model for forecasting of area. production and productivity of rice and its growth status in thanjavur district of Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences, 7(2), 149–156. https://doi.org/10.20546/ijcmas.2018.702.019
DOI: https://doi.org/10.20546/ijcmas.2018.702.019
Islyami, A., Aldashev, A., Thomas, T. S., & Dunston, S. (2020). Impact of climate change on agriculture in Kazakhstan. Silk Road: A Journal of Eurasian Development, 2(1), 66–88. https://doi.org/10.16997/srjed.19
DOI: https://doi.org/10.16997/srjed.19
Alani, L. A. F., & Alhiyali, A. D. K. (2021). Forecasting wheat productivity in Iraq for the period 2019-2025 using markov chains. Iraqi Journal of Agricultural Sciences, 52(2), 411–421. https://doi.org/10.36103/ijas.v52i2.1302
DOI: https://doi.org/10.36103/ijas.v52i2.1302
Kim, T., Solanki, V. S., Baraiya, H. J., Mitra, A., Shah, H., & Roy, S. (2020). A smart. sensible agriculture system using the exponential moving average model. Symmetry, 12(3), 457. https://doi.org/10.3390/sym12030457
DOI: https://doi.org/10.3390/sym12030457
Levin, E., Beisekenov, N., Wilson, M., Sadenova, M., Nabaweesi, R., & Nguyen, L. (2023). Empowering climate resilience: Leveraging cloud computing and big data for community Climate Change Impact Service (C3IS). Remote Sensing, 15(21), 5160. https://doi.org/10.3390/rs15215160
DOI: https://doi.org/10.3390/rs15215160
Lwaho, J., & Ilembo, B. (2023). Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Business Analyst Journal, 44(2), 128-139. https://doi.org/10.1108/BAJ-07-2023-0055
DOI: https://doi.org/10.1108/BAJ-07-2023-0055
Murugan, R., Thomas, F. S., Geetha Shree, G., Glory, S., & Shilpa, A. (2020). Linear regression approach to predict crop yield. Asian Journal of Computer Science and Technology, 9(1), 40–44. https://doi.org/10.51983/ajcst-2020.9.1.2152
DOI: https://doi.org/10.51983/ajcst-2020.9.1.2152
Nhu, A., Sahajpal, R., Justice, C., & Becker-Reshef, I. (2023). Improve state-level wheat yield forecasts in Kazakhstan on GEOGLAM’s EO data by leveraging a simple Spatial-Aware Technique. ArXiv, abs/2306.04646. https://doi.org/10.48550/arXiv.2306.04646
Okorie, I. E., Afuecheta, E., & Nadarajah, S. (2023). Time series and power law analysis of crop yield in some east African countries. PLOS ONE, 18(6), e0287011. https://doi.org/10.1371/journal.pone.0287011
DOI: https://doi.org/10.1371/journal.pone.0287011
Rai, S., Nandre, J., & Kanawade, B. R. (2022). A comparative analysis of crop yield prediction using regression. 2022 2nd International Conference on Intelligent Technologies (CONIT) (pp. 1–4). IEEE. https://doi.org/10.1109/CONIT55038.2022.9847783
DOI: https://doi.org/10.1109/CONIT55038.2022.9847783
Rathod, S., Singh, K. N., Patil, S. G., Naik, R. H., Ray, M., & Meena, V. S. (2018). Modeling and forecasting of oilseed production of India through artificial intelligence techniques. The Indian Journal of Agricultural Sciences, 88(1), 22–27. https://doi.org/10.56093/ijas.v88i1.79546
DOI: https://doi.org/10.56093/ijas.v88i1.79546
Rathod, S., Singh, K., Arya, P., Ray, M., Mukherjee, A., Sinha, K., Kumar, P., & Shekhawat, R. S. (2017). Forecasting maize yield using ARIMA-Genetic Algorithm approach. Outlook on Agriculture, 46(4), 265–271. https://doi.org/10.1177/0030727017744933
DOI: https://doi.org/10.1177/0030727017744933
Romanovska, P., Schauberger, B., & Gornott, C. (2023). Wheat yields in Kazakhstan can successfully be forecasted using a statistical crop model. European Journal of Agronomy, 147, 126843. https://doi.org/10.1016/j.eja.2023.126843
DOI: https://doi.org/10.1016/j.eja.2023.126843
Sadenova, M. A., Beisekenov, N. A., Rakhymberdina, M. Y., Varbanov, P. S., & Klemeš, J. J. (2021). Mathematical modelling in crop production to predict crop yields. Chemical Engineering Transactions, 88, 1225–1230. https://doi.org/10.3303/CET2188204
Sadenova, M., Beisekenov, N., Varbanov, P. S., & Pan, T. (2023). Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), 1195. https://doi.org/10.3390/agriculture13061195
DOI: https://doi.org/10.3390/agriculture13061195
Sellam, V., & Poovammal, E. (2016). Prediction of crop yield using regression analysis. Indian Journal of Science and Technology, 9(38), 1-5. https://doi.org/10.17485/ijst/2016/v9i38/91714
DOI: https://doi.org/10.17485/ijst/2016/v9i38/91714
Senthamarai Kannan, K., & Karuppasamy, K. M. (2020). Forecasting for agricultural production using Arima Model. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(9), 5939–5949.
Sharma, P. K., Dwivedi, S., Ali, L., & Arora, R. K. (2018). Forecasting maize production in India using ARIMA model, Agro Economist, 5(1), 1-6.
Suieubayeva, S., Denissova, O., Kabdulsharipova, A., & Idikut Ozpenсe, A. (2022). The agricultural sector in the Republic of Kazakhstan: Analysis of the state, problems and ways of solution. Eurasian Journal of Economic and Business Studies, 66(4), 19–31. https://doi.org/10.47703/ejebs.v4i66.185
DOI: https://doi.org/10.47703/ejebs.v4i66.185
Wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. Journal of Environmental Economics and Management, 109, 102462. https://doi.org/10.1016/j.jeem.2021.102462
DOI: https://doi.org/10.1016/j.jeem.2021.102462
Yildirim, T., Moriasi, D. N., Starks, P. J., & Chakraborty, D. (2022). Using artificial neural network (ANN) for short-range prediction of cotton yield in Data-Scarce regions. Agronomy, 12(4), 828. https://doi.org/10.3390/agronomy12040828
DOI: https://doi.org/10.3390/agronomy12040828
Yun, S. D., & Gramig, B. M. (2022). Spatial panel models of crop yield response to weather: Econometric specification strategies and prediction performance. Journal of Agricultural and Applied Economics, 54(1), 53–71. https://doi.org/10.1017/aae.2021.29
DOI: https://doi.org/10.1017/aae.2021.29
Zhao, Y., Vergopolan, N., Baylis, K., Blekking, J., Caylor, K., Evans, T., Giroux, S., Sheffield, J., & Estes, L. (2018). Comparing empirical and survey-based yield forecasts in a dryland agro-ecosystem. Agricultural and Forest Meteorology, 262, 147–156. https://doi.org/10.1016/j.agrformet.2018.06.024
DOI: https://doi.org/10.1016/j.agrformet.2018.06.024