A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Article Sidebar
Open full text
Issue Vol. 20 No. 1 (2024)
-
A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Malek M. AL-NAWASHI , Obaida M. AL-HAZAIMEH, Mutaz Kh. KHAZAALEH1–16
-
A STUDY ON AN AR-BASED CIRCUIT PRACTICE
Hae Chan Na, Yoon Sang Kim17-27
-
ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING
Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM28–55
-
THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES
Katarzyna KUREK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK56-71
-
OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT
Ghania ZIDANI, Djalal DJARAH, Abdslam BENMAKHLOUF, Laid KHETTACHE72-84
-
OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS.
Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa85–105
-
EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT
Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI106-121
-
APPLICATION OF THERMAL IMAGING CAMERAS FOR SMARTPHONE: SEEK THERMAL COMPACT PRO AND FLIR ONE PRO FOR HUMAN STRESS DETECTION – COMPARISON AND STUDY
Katarzyna BARAN122-138
-
FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS
Alexandru Marius OBRETIN, Andreea Alina CORNEA139-156
-
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES
Jarelh Galdos, Nikolai Lopez, Angie Medina, Jorge Huarca, Jorge Rendulich, Erasmo Sulla157-172
-
KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL
Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG173-188
-
ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec189-207
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The leading cause of cancer-related mortality is breast cancer. Breast cancer detection at an early stage is crucial. Data on breast cancer can be diagnosed using a number of different Machine learning approaches. Automated breast cancer diagnosis using a Machine Learning model is introduced in this research. Features were selected using Convolutional Neural Networks (CNNs) as a classifier model, and noise was removed using Contrast Limited Adaptive Histogram Equalization (CLAHE). On top of that, the research compares five algorithms: Random Forest, SVM, KNN, Naïve Bayes classifier, and Logistic Regression. An extensive dataset of 3002 combined images was used to test the system. The dataset included information from 1400 individuals who underwent digital mammography between 2007 and 2015. Accuracy and precision are the metrics by which the system's performance is evaluated. Due to its low computing power requirements and excellent accuracy, our suggested model is shown to be quite efficient in the simulation results.
Keywords:
References
Al-hazaimeh, O., Alomari, S. A., Alsakran, J., & Alhindawi, N. (2014). Cross correlation–new based technique for speaker recognition. Int J Acad Res, 6, 232-239.
Al-hazaimeh, O. M., Abu-Ein, A. A., Tahat, N. M., Al-Smadi, M. m. A., & Al-Nawashi, M. M. (2022). Combining Artificial Intelligence and Image Processing for Diagnosing Diabetic Retinopathy in Retinal Fundus Images. International Journal of Online & Biomedical Engineering, 18(13).
Al-Hazaimeh, O. M., Al-Nawashi, M., & Saraee, M. (2019). Geometrical-based approach for robust human image detection. Multimedia Tools and Applications, 78, 7029-7053.
Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional neural networks. International Journal of Machine Learning and Computing, 9(5), 662-667.
Al-Nawashi, M., Al-Hazaimeh, O. M., & Saraee, M. (2017). A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Computing and Applications, 28, 565-572.
Alanazi, S. A., Kamruzzaman, M., Islam Sarker, M. N., Alruwaili, M., Alhwaiti, Y., Alshammari, N., & Siddiqi, M. H. (2021). Boosting breast cancer detection using convolutional neural network. Journal of Healthcare Engineering, 2021.
Alhindawi, N., Al-Hazaimeh, O. M., Malkawi, R., & Alsakran, J. (2016). A Topic Modeling Based Solution for Confirming Software Documentation Quality. International Journal of Advanced Computer Science and Applications, 7(2).
Barrios, C. H. (2022). Global challenges in breast cancer detection and treatment. The Breast, 62, S3-S6.
Carlson, R. W., Allred, D. C., Anderson, B. O., Burstein, H. J., Carter, W. B., Edge, S. B., . . . Giordano, S. H. (2011). Invasive breast cancer. Journal of the National Comprehensive Cancer Network, 9(2), 136-222.
Chang, P. J., Asher, A., & Smith, S. R. (2021). A targeted approach to post-mastectomy pain and persistent pain following breast cancer treatment. Cancers, 13(20), 5191.
Desai, M., & Shah, M. (2021). An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth, 4, 1-11.
DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., . . . Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: a cancer journal for clinicians, 69(6), 438-451.
Fatima, N., Liu, L., Hong, S., & Ahmed, H. (2020). Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access, 8, 150360-150376.
Gharaibeh, N., Abu-Ein, A. A., Al-hazaimeh, O. M., Nahar, K. M., Abu-Ain, W. A., & Al-Nawashi, M. M. (2023). Swin Transformer-Based Segmentation and Multi-Scale Feature Pyramid Fusion Module for Alzheimer's Disease with Machine Learning. International Journal of Online & Biomedical Engineering, 19(4).
Gharaibeh, N., Al-hazaimeh, O. M., Abu-Ein, A., & Nahar, K. (2021). A hybrid svm naïve-bayes classifier for bright lesions recognition in eye fundus images. International Journal on Electrical Engineering and Informatics, 13(3), 530-545.
Gharaibeh, N., Al-Hazaimeh, O. M., Al-Naami, B., & Nahar, K. M. (2018). An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. International Journal of Signal and Imaging Systems Engineering, 11(4), 206-216.
Hall, K., Chang, V., & Mitchell, P. (2022). Machine Learning Techniques for Breast Cancer Detection. Paper presented at the COMPLEXIS.
Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.
Kharya, S., Dubey, D., & Soni, S. (2013). Predictive machine learning techniques for breast cancer detection. International journal of computer science and information Technologies, 4(6), 1023-1028.
Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415-2429.
Lu, W., Jansen, L., Post, W., Bonnema, J., Van de Velde, J., & De Bock, G. (2009). Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: a meta-analysis. Breast cancer research and treatment, 114, 403-412.
Ma'moun, A., Al-hazaimeh, O. M., Alhindawi, N., & Hayajneh, S. M. (2014). A dual curvature shell phased array simulation for delivery of high intensity focused ultrasound. Computer and Information Science, 7(3), 49.
Mahmood, T., Arsalan, M., Owais, M., Lee, M. B., & Park, K. R. (2020). Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. Journal of clinical medicine, 9(3), 749.
Melekoodappattu, J. G., Dhas, A. S., Kandathil, B. K., & Adarsh, K. (2023). Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. Journal of Ambient Intelligence and Humanized Computing, 14(9), 11397-11406.
Nahar, K., Al-Hazaimeh, O., Abu-Ein, A., & Gharaibeh, N. (2020). Phonocardiogram classification based on machine learning with multiple sound features. Journal of Computer Science, 16(11), 1648-1656.
Nahar, K., Alhindawi, N., Al-Hazaimeh, O., Alkhatib, R., & Al-Akhras, A. (2018). NLP and IR based solution for confirming classification of research papers. Journal of Theoretical and Applied Information Technology, 96(16), 5269-5279.
Nallamala, S. H., Mishra, P., & Koneru, S. V. (2019). Breast cancer detection using machine learning approaches. International Journal of Recent Technology and Engineering, 7(5), 478-481.
Nanda, K., Bastian, L. A., & Schulz, K. (2002). Hormone replacement therapy and the risk of death from breast cancer: a systematic review. American journal of obstetrics and gynecology, 186(2), 325-334.
Narod, S. A., Iqbal, J., Giannakeas, V., Sopik, V., & Sun, P. (2015). Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA oncology, 1(7), 888-896.
Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic.
Rajakumari, R., & Kalaivani, L. (2022). Breast Cancer Detection and Classification Using Deep CNN Techniques. Intelligent Automation & Soft Computing, 32(2).
Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38, 35-44.
Rivera-Franco, M. M., & Leon-Rodriguez, E. (2018). Delays in breast cancer detection and treatment in developing countries. Breast cancer: basic and clinical research, 12, 1178223417752677.
Sivapriya, J., Kumar, A., Sai, S. S., & Sriram, S. (2019). Breast cancer prediction using machine learning. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 4879-4881.
Svensson, B., Dylke, E., Ward, L., Black, D., & Kilbreath, S. L. (2020). Screening for breast cancer–related lymphoedema: self-assessment of symptoms and signs. Supportive Care in Cancer, 28, 3073-3080.
Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., & Houssami, N. (2020). Overview of radiomics in breast cancer diagnosis and prognostication. The Breast, 49, 74-80.
Tanabe, K., Ikeda, M., Hayashi, M., Matsuo, K., Yasaka, M., Machida, H., . . . Hirasawa, T. (2020). Comprehensive serum glycopeptide spectra analysis combined with artificial intelligence (CSGSA-AI) to diagnose early-stage ovarian cancer. Cancers, 12(9), 2373.
Tiwari, M., Bharuka, R., Shah, P., & Lokare, R. (2020). Breast cancer prediction using deep learning and machine learning techniques. Available at SSRN 3558786.
Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. Ict Express, 6(4), 320-324.
Vasundhara, S., Kiranmayee, B., & Suresh, C. (2019). Machine learning approach for breast cancer prediction. International Journal of Recent Technology and Engineering (IJRTE), 8(1).
Wang, Z., Li, M., Wang, H., Jiang, H., Yao, Y., Zhang, H., & Xin, J. (2019). Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access, 7, 105146-105158.
Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. The British Journal of Radiology, 95(1130), 20211033.
Yassin, N. I., Omran, S., El Houby, E. M., & Allam, H. (2018). Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Computer methods and programs in biomedicine, 156, 25-45.
Article Details
Abstract views: 886
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
