Abramowicz, W. & Tolksdorf, R. (2010). Business information systems. 13th International Conference. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12814-1
DOI: https://doi.org/10.1007/978-3-642-12814-1
Aggarwal, C. C., & Zhai, C. (Eds.). (2012). Mining text data. Springer New York.
DOI: https://doi.org/10.1007/978-1-4614-3223-4
Almeida, I. (2023). Introduction to Large Language Models for business leaders: Responsible AI strategy beyond fear and hype. Now Next Later AI.
Amerland, D. (2013). Google Semantic Search: Search Engine Optimization (SEO) Techniques that get your company more traffic, increase brand impact, and amplify your online presence. Pearson Education.
Balusamy, B., Abirami, R. N., Kadry, S., & Gandomi, A. H. (2021). Big Data: Concepts, Technology, and Architecture. John Wiley & Sons.
DOI: https://doi.org/10.1002/9781119701859
Bao, Z., Borovica-Gajic, R., Qiu, R., Choudhury, F., & Yang, Z. (Eds.). (2023). Databases theory and applications. 34th Australasian Database Conference (ADC 2023). Springer Nature Switzerland.
DOI: https://doi.org/10.1007/978-3-031-47843-7
Berry, M. W., & Kogan, J. (Eds.). (2010). Text Mining: Applications and theory. John Wiley & Sons.
DOI: https://doi.org/10.1002/9780470689646
Bobadilla, J. (2021). Machine Learning y Deep Learning: Usando Python, Scikit y Keras. Ediciones de la U.
Bustamante, N., & Guillén, S. (2020). Big Data y Mass Media. Aula Magna Proyecto clave McGraw Hill.
Campesato, O. (2023). Transformer, BERT, and GPT3: Including ChatGPT and Prompt Engineering. Mercury Learning and Information.
DOI: https://doi.org/10.1515/9781683928973
Cevallos, F. (2024, April 9). GitHub dataset for digital news classification and punctuation using Machine Learning and Text Mining techniques. Github, Inc. Retrieved from https://github.com/fcevallosepn/news
Chen, J., Huynh, V.-N., Tang, X., & Wu, J. (Eds.). (2023). Knowledge and systems science. 22nd International Symposium. Springer Nature Singapore.
DOI: https://doi.org/10.1007/978-981-99-8318-6
De Ville, B. (2001). Microsoft data mining: Integrated business intelligence for e-commerce and knowledge management. Digital Press.
Gils, B. (2023). Data in context: Models as enablers for managing and using data. Springer Nature Switzerland.
Gorelik, A. (2019). The Enterprise Big Data lake: Delivering the promise of Big Data and data science. O'Reilly Media.
Hildebrandt, M., & Gutwirth, S. (2008). Profiling the European citizen: Cross-disciplinary. Springer Netherlands.
DOI: https://doi.org/10.1007/978-1-4020-6914-7
Johri, P., Verma, J. K., & Paul, S. (Eds.). (2020). Applications of Machine Learning (Algorithms for Intelligent Systems). Springer Nature Singapore.
DOI: https://doi.org/10.1007/978-981-15-3357-0
Kannan, R., Rasool, R. U., Jin, H., & Balasundaram, S. R. (Eds.). (2016). Managing and processing Big Data in cloud computing. IGI Global. https://doi.org/10.4018/978-1-4666-9767-6
DOI: https://doi.org/10.4018/978-1-4666-9767-6
Koul, N., (2023). Prompt engineering for Large Language Models. Nimrita Koul.
Kumar, S. (2020). Can webometrics predict the academic rankings of institutes? The Journal of Prediction Markets, 14(2), 61-76. https://doi.org/10.5750/jpm.v14i2.1816
DOI: https://doi.org/10.5750/jpm.v14i2.1816
Nisbet, R., Miner, G., & Yale, K. (2017). Handbook of statistical analysis and data mining applications. Elsevier Science.
Ortega, J. M. (2022). Big data, machine learning y data science en python. RA-MA S.A. Editorial y Publicaciones.
Pasupuleti, P., & Purra, B. S. (2015). Data Lake Development with Big Data. Packt Publishing.
Rahman El Sheikh, A. A., & Alnoukari, M. (Eds.). (2012). Business Intelligence and Agile Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications. IGI Global. https://doi.org/10.4018/978-1-61350-050-7
DOI: https://doi.org/10.4018/978-1-61350-050-7
Rajaguru, H., & Prabhakar, S. K. (2017). KNN classifier and K-Means clustering for robust classification of epilepsy from EEG signals. A detailed analysis. Anchor Academic Publishing.
Ribeiro, J. A. (2019). Big Data for executives and market professionals - Second edition. Amazon Digital.
Rúa Pérez, J. (2009). Tecnologìa, innovación y empresa. Lulu Press, Incorporated.
Sánchez Trujillo, M., & Pérez Hernández, J. A. (2021). Metodología CRISP-DM en la gestión de proyecto de Data Mining. Caso enfermedades dermatológicas. International Conference on Project Management. EAN Universidad.
Sarkis, A. (2023). Training Data for Machine Learning. O'Reilly Media.
Suganthi, K., Karthik, R., Rajesh, G., & Ching, P. H. C. (Eds.). (2021). Machine Learning and Deep Learning techniques in wireless and Mobile Networking Systems. CRC Press.
DOI: https://doi.org/10.1201/9781003107477
Wang, L., Licheng, J., Shi, G., Li, X., & Liu, J. (Ed.). (2006). Fuzzy systems and knowledge discovery. Third International Conference. Springer Berlin Heidelberg.
DOI: https://doi.org/10.1007/11881599
Zong, C., Xia, R., & Zhang, J. (2021). Text Data Mining. Springer Nature Singapore.
DOI: https://doi.org/10.1007/978-981-16-0100-2