Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional Neural Networks. International Journal of Machine Learning and Computing, 9(5), 662‑667. https://doi.org/10.18178/ijmlc.2019.9.5.855
DOI: https://doi.org/10.18178/ijmlc.2019.9.5.855
Azcarate, A., Hageloh, F., Sande, K., & Valenti, R. (2005). Automatic facial emotion recognition. Universiteit van Amsterdam.
Benadla, D., & Hadji, M. (2021). EFL Students Affective Attitudes towards Distance E-Learning Based on Moodle Platform during the Covid-19the Pandemic : Perspectives from Dr. MoulayTahar University of Saida, Algeria. Arab World English Journal, 55-67. https://doi.org/10.31235/osf.io/4xepz
DOI: https://doi.org/10.24093/awej/covid.4
Budhwar, K. (2017). The role of technology in education. International Journal of Engineering Applied Sciences and Technology, 2(8), 55‑57.
Chandrakala, P., Srinivas, B., & Anil, K. M. (2022). Real time face detection and face recognition using OpenCV and Python. Journal of Engineering Sciences, 13(06), 696‑706.
Dhawan, S. (2020). Online learning : A Panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5‑22. https://doi.org/10.1177/0047239520934018
DOI: https://doi.org/10.1177/0047239520934018
Elliott, E. A., & Jacobs, A. M. (2013). Facial expressions, emotions, and sign languages. Frontiers in Psychology, 4, 115. https://doi.org/10.3389/fpsyg.2013.00115
DOI: https://doi.org/10.3389/fpsyg.2013.00115
Engelbrecht, E. (2005). Adapting to changing expectations : Post-graduate students’ experience of an e-learning tax program. Computers & Education, 45(2), 217‑229. https://doi.org/10.1016/j.compedu.2004.08.001
DOI: https://doi.org/10.1016/j.compedu.2004.08.001
Farkhod, A., Abdusalomov, A. B., Mukhiddinov, M., & Cho, Y.-I. (2022). Development of real-time landmark-based emotion recognition CNN for masked faces. Sensors, 22(22), 8704. https://doi.org/10.3390/s22228704
DOI: https://doi.org/10.3390/s22228704
Garcia-Garcia, J. M., Penichet, V. M. R., & Lozano, M. D. (2017). Emotion detection : A technology review. Proceedings of the XVIII International Conference on Human Computer Interaction (pp. 1‑8). https://doi.org/10.1145/3123818.3123852
DOI: https://doi.org/10.1145/3123818.3123852
Gray, J. A., & DiLoreto, M. (2016). The effects of student engagement, student satisfaction, and perceived learning in online learning environments. International Journal of Educational Leadership Preparation, 11(1).
Harandi, S. R. (2015). Effects of e-learning on students’ motivation. Procedia - Social and Behavioral Sciences, 181, 423‑430. https://doi.org/10.1016/j.sbspro.2015.04.905
DOI: https://doi.org/10.1016/j.sbspro.2015.04.905
Heredia, J., Lopes-Silva, E., Cardinale, Y., Diaz-Amado, J., Dongo, I., Graterol, W., & Aguilera, A. (2022). Adaptive multimodal emotion detection architecture for social robots. IEEE Access, 10, 20727‑20744. https://doi.org/10.1109/ACCESS.2022.3149214
DOI: https://doi.org/10.1109/ACCESS.2022.3149214
Hussain, S. A., & Salim Abdallah Al Balushi, A. (2020). A real time face emotion classification and recognition using deep learning model. Journal of Physics: Conference Series, 1432, 012087. https://doi.org/10.1088/1742-6596/1432/1/012087
DOI: https://doi.org/10.1088/1742-6596/1432/1/012087
Keshri, A., Singh, A., Kumar, B., Pratap, D., & Chauhan, A. (2022). Automatic detection and classification of human emotion in real-time scenario. Journal of IoT in Social, Mobile, Analytics, and Cloud, 4(1), 5. https://doi.org/10.36548/jismac.2022.1.005
DOI: https://doi.org/10.36548/jismac.2022.1.005
Kumar, A., Kaur, A., & Kumar, M. (2019). Face detection techniques : A review. Artificial Intelligence Review, 52, 927‑948. https://doi.org/10.1007/s10462-018-9650-2
DOI: https://doi.org/10.1007/s10462-018-9650-2
Mahanta, D., & Ahmed, M. (2012). E-Learning objectives, methodologies, tools and its limitation. International Journal of Innovative Technology and Exploring Engineering, 2(1), 46-51.
Memari, M. (2020). Synchronous and asynchronous electronic learning and EFL learners’ learning of grammar. Iranian Journal of Applied Language Studies, 12(2), 89‑114. https://doi.org/10.22111/ijals.2020.6043
Muhammad, N., Ariyanto, E., & Yudo, Y. (2023). Improved face detection accuracy using Haar cascade classifier method and ESP32-CAM for IoT-based home door security. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, 8(1), 154‑161. https://doi.org/10.29100/jipi.v8i1.3365
DOI: https://doi.org/10.29100/jipi.v8i1.3365
Perwej, Y., Trivedi, A., Tripathi, C., Srivastava, A., & Kulshrestha, N. (2022). Face recognition based automated attendance management system. International Journal of Scientific Research in Science and Technology, 9(1), 261-268. https://doi.org/10.32628/IJSRST229147
DOI: https://doi.org/10.32628/IJSRST229147
Rizvi, Q. M., Agarwal, B. G., & Beg, R. (2011). A Review on face detection methods. Journal of Management Development and Information Technology, 11.
Sati, V., Sánchez, S. M., Shoeibi, N., Arora, A., & Corchado, J. M. (2021). Face detection and recognition, face emotion recognition through NVIDIA Jetson Nano. In P. Novais, G. Vercelli, J. L. Larriba-Pey, F. Herrera, & P. Chamoso (Eds.), Advances in Intelligent Systems and Computing (pp. 177‑185). Springer International Publishing. https://doi.org/10.1007/978-3-030-58356-9_18
DOI: https://doi.org/10.1007/978-3-030-58356-9_18
Schmidt, K. L., & Cohn, J. F. (2001). Human facial expressions as adaptations: Evolutionary questions in facial expression research. American journal of physical anthropology, 33, 3‑24. https://doi.org/10.1002/ajpa.2001
DOI: https://doi.org/10.1002/ajpa.20001
Seidel, E.-M., Habel, U., Kirschner, M., Gur, R. C., & Derntl, B. (2010). The impact of facial emotional expressions on behavioral tendencies in women and men. Journal of Experimental Psychology. Human Perception and Performance, 36(2), 500‑507. https://doi.org/10.1037/a0018169
DOI: https://doi.org/10.1037/a0018169
Singh, R., & Awasthi, S. (2020). Updated comparative analysis on video conferencing platforms - Zoom, Google Meet, Microsoft Teams, WebEx Teams and GoToMeetings. EasyChair Preprint, 4026. https://easychair.org/publications/preprint/Fq7T
Sridharan, M., Arulanandam, D. C. R., Chinnasamy, R. K., Thimmanna, S., & Dhandapani, S. (2021). Recognition of font and tamil letter in images using deep learning. Applied Computer Science, 17(2), 90‑99. https://doi.org/10.23743/acs-2021-15
DOI: https://doi.org/10.35784/acs-2021-15
Tarnowski, P., Kołodziej, M., Majkowski, A., & Rak, R. J. (2017). Emotion recognition using facial expressions. Procedia Computer Science, 108, 1175‑1184. https://doi.org/10.1016/j.procs.2017.05.025
DOI: https://doi.org/10.1016/j.procs.2017.05.025
Tian, Y., Kanade, T., & Cohn, J. F. (2011). Facial expression recognition. In S. Z. Li & A. K. Jain (Eds.), Handbook of Face Recognition (pp. 487–519). Springer London. https://doi.org/10.1007/978-0-85729-932-1_19
DOI: https://doi.org/10.1007/978-0-85729-932-1_19
Yücelsin-Taş, Y. T. (2021). Difficulties encountered by students during distance education in times of confinement in Turkey. Educational Research and Reviews, 16(3), 87-92.