IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS

Amina KINANE DAOUADJI

a.dkinane@gmail.com
a:1:{s:5:"en_US";s:142:"Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Faculté Des Mathématiques Et Informatique, Département d'informatique";} (Algeria)

Fatima BENDELLA


Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Faculté Des Mathématiques Et Informatique, Département d'informatique (Algeria)

Abstract

 Modern technology has become a vital part of our daily lives, and the world has undergone remarkable advancements in various scientific and technological fields. The advancement of technology presents a variety of opportunities for students to promote academic development and make it easier to access education through online learning systems. The most difficult and most demanding task during learning is to be aware of and support the emotional side of students. Recognizing one's emotions is easy for humans, but it is a challenging task for computers due to the specific features of the human face. However, recent advances in computing and image processing have made it possible and easy to detect and categorize emotions in images and videos. This paper focuses on detecting learners' emotions in real time during synchronous learning. In this regard, a video/chat application has been developed for the tutor to detect the emotions of the learners while presenting his lesson. The emotions detected are separated into three states (Satisfied, Neutral and Unsatisfied); each state is made up of two or three distinct emotions. The objective is to assist teachers in adapting teaching methods in virtual learning settings according to the emotions of learners.


Keywords:

Convolutional neural network, facial expression analysis, classification, E-learning, Deeplearning

Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional Neural Networks. International Journal of Machine Learning and Computing, 9(5), 662‑667. https://doi.org/10.18178/ijmlc.2019.9.5.855
DOI: https://doi.org/10.18178/ijmlc.2019.9.5.855   Google Scholar

Azcarate, A., Hageloh, F., Sande, K., & Valenti, R. (2005). Automatic facial emotion recognition. Universiteit van Amsterdam.
  Google Scholar

Benadla, D., & Hadji, M. (2021). EFL Students Affective Attitudes towards Distance E-Learning Based on Moodle Platform during the Covid-19the Pandemic : Perspectives from Dr. MoulayTahar University of Saida, Algeria. Arab World English Journal, 55-67. https://doi.org/10.31235/osf.io/4xepz
DOI: https://doi.org/10.24093/awej/covid.4   Google Scholar

Budhwar, K. (2017). The role of technology in education. International Journal of Engineering Applied Sciences and Technology, 2(8), 55‑57.
  Google Scholar

Chandrakala, P., Srinivas, B., & Anil, K. M. (2022). Real time face detection and face recognition using OpenCV and Python. Journal of Engineering Sciences, 13(06), 696‑706.
  Google Scholar

Dhawan, S. (2020). Online learning : A Panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5‑22. https://doi.org/10.1177/0047239520934018
DOI: https://doi.org/10.1177/0047239520934018   Google Scholar

Elliott, E. A., & Jacobs, A. M. (2013). Facial expressions, emotions, and sign languages. Frontiers in Psychology, 4, 115. https://doi.org/10.3389/fpsyg.2013.00115
DOI: https://doi.org/10.3389/fpsyg.2013.00115   Google Scholar

Engelbrecht, E. (2005). Adapting to changing expectations : Post-graduate students’ experience of an e-learning tax program. Computers & Education, 45(2), 217‑229. https://doi.org/10.1016/j.compedu.2004.08.001
DOI: https://doi.org/10.1016/j.compedu.2004.08.001   Google Scholar

Farkhod, A., Abdusalomov, A. B., Mukhiddinov, M., & Cho, Y.-I. (2022). Development of real-time landmark-based emotion recognition CNN for masked faces. Sensors, 22(22), 8704. https://doi.org/10.3390/s22228704
DOI: https://doi.org/10.3390/s22228704   Google Scholar

Garcia-Garcia, J. M., Penichet, V. M. R., & Lozano, M. D. (2017). Emotion detection : A technology review. Proceedings of the XVIII International Conference on Human Computer Interaction (pp. 1‑8). https://doi.org/10.1145/3123818.3123852
DOI: https://doi.org/10.1145/3123818.3123852   Google Scholar

Gray, J. A., & DiLoreto, M. (2016). The effects of student engagement, student satisfaction, and perceived learning in online learning environments. International Journal of Educational Leadership Preparation, 11(1).
  Google Scholar

Harandi, S. R. (2015). Effects of e-learning on students’ motivation. Procedia - Social and Behavioral Sciences, 181, 423‑430. https://doi.org/10.1016/j.sbspro.2015.04.905
DOI: https://doi.org/10.1016/j.sbspro.2015.04.905   Google Scholar

Heredia, J., Lopes-Silva, E., Cardinale, Y., Diaz-Amado, J., Dongo, I., Graterol, W., & Aguilera, A. (2022). Adaptive multimodal emotion detection architecture for social robots. IEEE Access, 10, 20727‑20744. https://doi.org/10.1109/ACCESS.2022.3149214
DOI: https://doi.org/10.1109/ACCESS.2022.3149214   Google Scholar

Hussain, S. A., & Salim Abdallah Al Balushi, A. (2020). A real time face emotion classification and recognition using deep learning model. Journal of Physics: Conference Series, 1432, 012087. https://doi.org/10.1088/1742-6596/1432/1/012087
DOI: https://doi.org/10.1088/1742-6596/1432/1/012087   Google Scholar

Keshri, A., Singh, A., Kumar, B., Pratap, D., & Chauhan, A. (2022). Automatic detection and classification of human emotion in real-time scenario. Journal of IoT in Social, Mobile, Analytics, and Cloud, 4(1), 5. https://doi.org/10.36548/jismac.2022.1.005
DOI: https://doi.org/10.36548/jismac.2022.1.005   Google Scholar

Kumar, A., Kaur, A., & Kumar, M. (2019). Face detection techniques : A review. Artificial Intelligence Review, 52, 927‑948. https://doi.org/10.1007/s10462-018-9650-2
DOI: https://doi.org/10.1007/s10462-018-9650-2   Google Scholar

Mahanta, D., & Ahmed, M. (2012). E-Learning objectives, methodologies, tools and its limitation. International Journal of Innovative Technology and Exploring Engineering, 2(1), 46-51.
  Google Scholar

Memari, M. (2020). Synchronous and asynchronous electronic learning and EFL learners’ learning of grammar. Iranian Journal of Applied Language Studies, 12(2), 89‑114. https://doi.org/10.22111/ijals.2020.6043
  Google Scholar

Muhammad, N., Ariyanto, E., & Yudo, Y. (2023). Improved face detection accuracy using Haar cascade classifier method and ESP32-CAM for IoT-based home door security. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, 8(1), 154‑161. https://doi.org/10.29100/jipi.v8i1.3365
DOI: https://doi.org/10.29100/jipi.v8i1.3365   Google Scholar

Perwej, Y., Trivedi, A., Tripathi, C., Srivastava, A., & Kulshrestha, N. (2022). Face recognition based automated attendance management system. International Journal of Scientific Research in Science and Technology, 9(1), 261-268. https://doi.org/10.32628/IJSRST229147
DOI: https://doi.org/10.32628/IJSRST229147   Google Scholar

Rizvi, Q. M., Agarwal, B. G., & Beg, R. (2011). A Review on face detection methods. Journal of Management Development and Information Technology, 11.
  Google Scholar

Sati, V., Sánchez, S. M., Shoeibi, N., Arora, A., & Corchado, J. M. (2021). Face detection and recognition, face emotion recognition through NVIDIA Jetson Nano. In P. Novais, G. Vercelli, J. L. Larriba-Pey, F. Herrera, & P. Chamoso (Eds.), Advances in Intelligent Systems and Computing (pp. 177‑185). Springer International Publishing. https://doi.org/10.1007/978-3-030-58356-9_18
DOI: https://doi.org/10.1007/978-3-030-58356-9_18   Google Scholar

Schmidt, K. L., & Cohn, J. F. (2001). Human facial expressions as adaptations: Evolutionary questions in facial expression research. American journal of physical anthropology, 33, 3‑24. https://doi.org/10.1002/ajpa.2001
DOI: https://doi.org/10.1002/ajpa.20001   Google Scholar

Seidel, E.-M., Habel, U., Kirschner, M., Gur, R. C., & Derntl, B. (2010). The impact of facial emotional expressions on behavioral tendencies in women and men. Journal of Experimental Psychology. Human Perception and Performance, 36(2), 500‑507. https://doi.org/10.1037/a0018169
DOI: https://doi.org/10.1037/a0018169   Google Scholar

Singh, R., & Awasthi, S. (2020). Updated comparative analysis on video conferencing platforms - Zoom, Google Meet, Microsoft Teams, WebEx Teams and GoToMeetings. EasyChair Preprint, 4026. https://easychair.org/publications/preprint/Fq7T
  Google Scholar

Sridharan, M., Arulanandam, D. C. R., Chinnasamy, R. K., Thimmanna, S., & Dhandapani, S. (2021). Recognition of font and tamil letter in images using deep learning. Applied Computer Science, 17(2), 90‑99. https://doi.org/10.23743/acs-2021-15
DOI: https://doi.org/10.35784/acs-2021-15   Google Scholar

Tarnowski, P., Kołodziej, M., Majkowski, A., & Rak, R. J. (2017). Emotion recognition using facial expressions. Procedia Computer Science, 108, 1175‑1184. https://doi.org/10.1016/j.procs.2017.05.025
DOI: https://doi.org/10.1016/j.procs.2017.05.025   Google Scholar

Tian, Y., Kanade, T., & Cohn, J. F. (2011). Facial expression recognition. In S. Z. Li & A. K. Jain (Eds.), Handbook of Face Recognition (pp. 487–519). Springer London. https://doi.org/10.1007/978-0-85729-932-1_19
DOI: https://doi.org/10.1007/978-0-85729-932-1_19   Google Scholar

Yücelsin-Taş, Y. T. (2021). Difficulties encountered by students during distance education in times of confinement in Turkey. Educational Research and Reviews, 16(3), 87-92.
  Google Scholar

Download


Published
2024-06-30

Cited by

KINANE DAOUADJI, A., & BENDELLA, F. (2024). IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS. Applied Computer Science, 20(2), 126–137. https://doi.org/10.35784/acs-2024-20

Authors

Amina KINANE DAOUADJI 
a.dkinane@gmail.com
a:1:{s:5:"en_US";s:142:"Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Faculté Des Mathématiques Et Informatique, Département d'informatique";} Algeria

Authors

Fatima BENDELLA 

Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Faculté Des Mathématiques Et Informatique, Département d'informatique Algeria

Statistics

Abstract views: 269
PDF downloads: 75


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.