VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
nahedeldesouky5922@azhar.edu.eg
Abstract
Forecasting violence has become a critical obstacle in the field of video monitoring to guarantee public safety. Lately, YOLO (You Only Look Once) has become a popular and effective method for detecting weapons. However, identifying and forecasting violence remains a challenging endeavor. Additionally, the classification results had to be enhanced with semantic information. This study suggests a method for forecasting violent incidents by utilizing Yolov9 and ontology. The authors employed Yolov9 to identify and categorize weapons and individuals carrying them. Ontology is utilized for semantic prediction to assist in predicting violence. Semantic prediction happens through the application of a SPARQL query to the identified frame label. The authors developed a Threat Events Ontology (TEO) to gain semantic significance. The system was tested with a fresh dataset obtained from a variety of security cameras and websites. The VP Dataset comprises 8739 images categorized into 9 classes. The authors examined the outcomes of using Yolov9 in conjunction with ontology in comparison to using Yolov9 alone. The findings show that by combining Yolov9 with ontology, the violence prediction system's semantics and dependability are enhanced. The suggested system achieved a mean Average Precision (mAP) of 83.7 %, 88% for precision, and 76.4% for recall. However, the mAP of Yolov9 without TEO ontology achieved a score of 80.4%. It suggests that this method has a lot of potential for enhancing public safety. The authors finished all training and testing processes on Google Colab's GPU. That reduced the average duration by approximately 90.9%. The result of this work is a next level of object detectors that utilize ontology to improve the semantic significance for real-time end-to-end object detection.
Keywords:
References
Arslan, A. N., Hempelmann, C. F., Attardo, S., Blount, G. P., & Sirakov, N. M. (2015). Threat assessment using visual hierarchy and conceptual firearms ontology. Optical Engineering, 54(5), 053109. https://doi.org/10.1117/1.oe.54.5.053109 DOI: https://doi.org/10.1117/1.OE.54.5.053109
Arslan, A. N., Sirakov, N. M., & Attardo, S. (2012). Weapon ontology annotation using boundary describing sequences. 2012 IEEE Southwest Symposium on Image Analysis and Interpretation (pp. 101-104). https://doi.org/10.1109/SSIAI.2012.6202463 DOI: https://doi.org/10.1109/SSIAI.2012.6202463
Ashraf, A. H., Imran, M., Qahtani, A. M., Alsufyani, A., Almutiry, O., Mahmood, A., Attique, M., & Habib, M. (2022). Weapons detection for security and video surveillance using CNN and YOLO-V5s. Computers, Materials and Continua, 70(2), 2761–2775. https://doi.org/10.32604/cmc.2022.018785 DOI: https://doi.org/10.32604/cmc.2022.018785
Benjumea, A., Teeti, I., Cuzzolin, F., & Bradley, A. (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. ArXiv, abs/2112.11798. https://doi.org/10.48550/arXiv.2112.11798
Bisong, E. (2019). Building Machine Learning and Deep Learning models on Google Cloud platform: A Comprehensive Guide for Beginners. Apress Berkeley. DOI: https://doi.org/10.1007/978-1-4842-4470-8
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. ArXiv, abs/2004.10934. https://doi.org/10.48550/arXiv.2004.10934
Dugyala, R., Vishnu Vardhan Reddy, M., Tharun Reddy, C., & Vijendar, G. (2023). Weapon detection in surveillance videos using YOLOV8 and PELSF-DCNN. 4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023) (pp. 01071). E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202339101071 DOI: https://doi.org/10.1051/e3sconf/202339101071
Elsayed, E. K., & Fathy, D. R. (2020a). Semantic Deep Learning to translate dynamic sign language. International Journal of Intelligent Engineering and Systems, 14(1), 316-325. https://doi.org/10.22266/IJIES2021.0228.30 DOI: https://doi.org/10.22266/ijies2021.0228.30
Elsayed, E. K., & Fathy, D. R. (2020b). Sign language semantic translation system using ontology and Deep Learning. International Journal of Advanced Computer Science and Applications, 11(1), 141-147. https://doi.org/10.14569/IJACSA.2020.0110118 DOI: https://doi.org/10.14569/IJACSA.2020.0110118
Glenn, J. (2022, November 22). Yolov5 release v7.0. https://github.com/ultralytics/yolov5/tree/v7.0
Han, J., Liu, Y., Li, Z., Liu, Y., & Zhan, B. (2023). Safety helmet detection based on YOLOv5 driven by super-resolution reconstruction. Sensors, 23(4), 1822. https://doi.org/10.3390/s23041822 DOI: https://doi.org/10.3390/s23041822
Khalid, S., Waqar, A., Ain Tahir, H. U., Edo, O. C., & Tenebe, I. T. (2023). Weapon detection system for surveillance and security. 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD 2023) (pp. 1-7). IEEE. https://doi.org/10.1109/ITIKD56332.2023.10099733 DOI: https://doi.org/10.1109/ITIKD56332.2023.10099733
Lai, J., & Maples, S. (2017). Developing a real-time gun detection classifier. Stanford University.
Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., Ke, Z., Xu, X., & Chu, X. (2023). YOLOv6 v3.0: A full-scale reloading. ArXiv, abs/2301.05586. https://doi.org/10.48550/arXiv.2301.05586
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. ArXiv, abs/2209.02976. https://doi.org/10.48550/arXiv.2209.02976
Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., & Yang, J. (2020). Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. ArXiv, abs/2006.04388. https://doi.org/10.48550/arXiv.2006.04388
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 2999–3007). IEEE. https://doi.org/10.1109/ICCV.2017.324 DOI: https://doi.org/10.1109/ICCV.2017.324
Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., & Chen, H. (2023). DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics, 12(10), 2323. https://doi.org/10.3390/electronics12102323 DOI: https://doi.org/10.3390/electronics12102323
Mahareek, E. A. (2024). VP Dataset. https://Universe.Roboflow.Com/al-Azhar-Unversity/Violence-Prediction-in-Surveillance-Videos.
Mahareek, E. A., Elsayed, E. K., Eldesouky, N. M., & Eldahshan, K. A. (2024). Detecting anomalies in security cameras with 3D-convolutional neural network and convolutional long short-term memory. International Journal of Electrical and Computer Engineering, 14(1), 993–1004. https://doi.org/10.11591/ijece.v14i1.pp993-1004 DOI: https://doi.org/10.11591/ijece.v14i1.pp993-1004
Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), (pp. 6517-6525). IEEE. https://doi.org/10.1109/CVPR.2017.690 DOI: https://doi.org/10.1109/CVPR.2017.690
Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. ArXiv, abs/1804.02767. https://doi.org/10.48550/arXiv.1804.02767
Redmon, J. (2016). Darknet: Open source neural networks in c. http://pjreddie.com/darknet/
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 779-788). IEEE. https://doi.org/10.1109/CVPR.2016.91 DOI: https://doi.org/10.1109/CVPR.2016.91
Reis, D., Kupec, J., Hong, J., & Daoudi, A. (2023). Real-Time flying object detection with YOLOv8. ArXiv, abs/2305.09972. https://doi.org/10.48550/arXiv.2305.09972
Solawetz, J. F. (2023, January 11). What is YOLOv8? The Ultimate Guide. https://blog.roboflow.com/whats-new-in-yolov8/
Songire, S. B., Chandrakant Patkar, U., Chate, P. J., Patil, M. A., Wani, L. K., Pathak, A. S., Bhardwaj Shrivas, S., & Patil, U. (2023). Using Yolo V7 development of complete vids solution based on latest requirements to provide highway traffic and incident real time info to the atms control room using Artificial Intelligence. Journal of Survey in Fisheries Sciences, 10(4S), 3444-3456. DOI: https://doi.org/10.22541/au.167226777.73530595/v1
Tian, Z., Shen, C., Chen, H., & He, T. (2022). FCOS: A simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1922–1933. https://doi.org/10.1109/TPAMI.2020.3032166 DOI: https://doi.org/10.1109/TPAMI.2020.3032166
Verma, R., & Jayant, S. (2022). Cyber crime prediction using Machine Learning. In M. Singh, V. Tyagi, P. K. Gupta, J. Flusser, & T. Ören (Eds.), Advances in Computing and Data Sciences (Vol. 1614, pp. 160–172). Springer International Publishing. https://doi.org/10.1007/978-3-031-12641-3_14 DOI: https://doi.org/10.1007/978-3-031-12641-3_14
Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1571-1580). IEEE. https://doi.org/10.1109/CVPRW50498.2020.00203 DOI: https://doi.org/10.1109/CVPRW50498.2020.00203
Wang, C., He, W., Nie, Y., Guo, J., Liu, C., Han, K., & Wang, Y. (2023). Gold-YOLO: Efficient object detector via Gather-and-Distribute mechanism. ArXiv, abs/2309.11331. https://doi.org/10.48550/arXiv.2309.11331
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. ArXiv, abs/2207.02696. https://doi.org/10.48550/arXiv.2207.02696
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 7464–7475). IEEE. https://doi.org/10.1109/cvpr52729.2023.00721 DOI: https://doi.org/10.1109/CVPR52729.2023.00721
Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. ArXiv, abs/2402.13616. https://doi.org/10.48550/arXiv.2402.13616
Zhang, X., Fang, S., Shen, Y., Yuan, X., & Lu, Z. (2024). Hierarchical velocity optimization for connected automated vehicles with cellular vehicle-to-everything communication at continuous signalized intersections. IEEE Transactions on Intelligent Transportation Systems, 25(3), 2944–2955. https://doi.org/10.1109/TITS.2023.3274580 DOI: https://doi.org/10.1109/TITS.2023.3274580
Zhang, S., Chi, C., Yao, Y., Lei, Z., & Li, S. Z. (2019). Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. ArXiv, abs/1912.02424. https://doi.org/10.48550/arXiv.1912.02424 DOI: https://doi.org/10.1109/CVPR42600.2020.00978
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2020). Distance-IoU loss: Faster and better learning for bounding box regression. 34th AAAI Conference on Artificial Intelligence (AAAI 2020) (pp. 12993-13000). https://doi.org/10.1609/aaai.v34i07.6999 DOI: https://doi.org/10.1609/aaai.v34i07.6999
Article Details
Abstract views: 746
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
