VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS

Esraa Alaa MAHAREEK

esraa.mahareek@azhar.edu.eg
Al-Azhar University (Egypt)
https://orcid.org/0000-0002-9042-248X

Doaa Rizk FATHY


Al-Azhar University (Egypt)
https://orcid.org/0000-0002-5625-0282

Eman Karm ELSAYED


School of Computer science in Canadian International College CIC (Egypt)
https://orcid.org/0000-0001-7870-927X

Nahed ELDESOUKY


Al-Azhar University (Egypt)
https://orcid.org/0009-0008-4547-3051

Kamal Abdelraouf ELDAHSHAN


Al-Azhar University (Egypt)
https://orcid.org/0000-0002-9953-5480

Abstract

Forecasting violence has become a critical obstacle in the field of video monitoring to guarantee public safety. Lately, YOLO (You Only Look Once) has become a popular and effective method for detecting weapons. However, identifying and forecasting violence remains a challenging endeavor. Additionally, the classification results had to be enhanced with semantic information. This study suggests a method for forecasting violent incidents by utilizing Yolov9 and ontology. The authors employed Yolov9 to identify and categorize weapons and individuals carrying them. Ontology is utilized for semantic prediction to assist in predicting violence. Semantic prediction happens through the application of a SPARQL query to the identified frame label. The authors developed a Threat Events Ontology (TEO) to gain semantic significance. The system was tested with a fresh dataset obtained from a variety of security cameras and websites. The VP Dataset comprises 8739 images categorized into 9 classes. The authors examined the outcomes of using Yolov9 in conjunction with ontology in comparison to using Yolov9 alone. The findings show that by combining Yolov9 with ontology, the violence prediction system's semantics and dependability are enhanced. The suggested system achieved a mean Average Precision (mAP) of 83.7 %, 88% for precision, and 76.4% for recall. However, the mAP of Yolov9 without TEO ontology achieved a score of 80.4%. It suggests that this method has a lot of potential for enhancing public safety. The authors finished all training and testing processes on Google Colab's GPU. That reduced the average duration by approximately 90.9%. The result of this work is a next level of object detectors that utilize ontology to improve the semantic significance for real-time end-to-end object detection.


Keywords:

Violence prediction system, YOLO v8, Ontology, Surveillance cameras, Anomaly prediction

Arslan, A. N., Hempelmann, C. F., Attardo, S., Blount, G. P., & Sirakov, N. M. (2015). Threat assessment using visual hierarchy and conceptual firearms ontology. Optical Engineering, 54(5), 053109. https://doi.org/10.1117/1.oe.54.5.053109
  Google Scholar

Arslan, A. N., Sirakov, N. M., & Attardo, S. (2012). Weapon ontology annotation using boundary describing sequences. 2012 IEEE Southwest Symposium on Image Analysis and Interpretation (pp. 101-104). https://doi.org/10.1109/SSIAI.2012.6202463
  Google Scholar

Ashraf, A. H., Imran, M., Qahtani, A. M., Alsufyani, A., Almutiry, O., Mahmood, A., Attique, M., & Habib, M. (2022). Weapons detection for security and video surveillance using CNN and YOLO-V5s. Computers, Materials and Continua, 70(2), 2761–2775. https://doi.org/10.32604/cmc.2022.018785
  Google Scholar

Benjumea, A., Teeti, I., Cuzzolin, F., & Bradley, A. (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. ArXiv, abs/2112.11798. https://doi.org/10.48550/arXiv.2112.11798
  Google Scholar

Bisong, E. (2019). Building Machine Learning and Deep Learning models on Google Cloud platform: A Comprehensive Guide for Beginners. Apress Berkeley.
  Google Scholar

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. ArXiv, abs/2004.10934. https://doi.org/10.48550/arXiv.2004.10934
  Google Scholar

Dugyala, R., Vishnu Vardhan Reddy, M., Tharun Reddy, C., & Vijendar, G. (2023). Weapon detection in surveillance videos using YOLOV8 and PELSF-DCNN. 4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023) (pp. 01071). E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202339101071
  Google Scholar

Elsayed, E. K., & Fathy, D. R. (2020a). Semantic Deep Learning to translate dynamic sign language. International Journal of Intelligent Engineering and Systems, 14(1), 316-325. https://doi.org/10.22266/IJIES2021.0228.30
  Google Scholar

Elsayed, E. K., & Fathy, D. R. (2020b). Sign language semantic translation system using ontology and Deep Learning. International Journal of Advanced Computer Science and Applications, 11(1), 141-147. https://doi.org/10.14569/IJACSA.2020.0110118
  Google Scholar

Glenn, J. (2022, November 22). Yolov5 release v7.0. https://github.com/ultralytics/yolov5/tree/v7.0
  Google Scholar

Han, J., Liu, Y., Li, Z., Liu, Y., & Zhan, B. (2023). Safety helmet detection based on YOLOv5 driven by super-resolution reconstruction. Sensors, 23(4), 1822. https://doi.org/10.3390/s23041822
  Google Scholar

Khalid, S., Waqar, A., Ain Tahir, H. U., Edo, O. C., & Tenebe, I. T. (2023). Weapon detection system for surveillance and security. 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD 2023) (pp. 1-7). IEEE. https://doi.org/10.1109/ITIKD56332.2023.10099733
  Google Scholar

Lai, J., & Maples, S. (2017). Developing a real-time gun detection classifier. Stanford University.
  Google Scholar

Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., Ke, Z., Xu, X., & Chu, X. (2023). YOLOv6 v3.0: A full-scale reloading. ArXiv, abs/2301.05586. https://doi.org/10.48550/arXiv.2301.05586
  Google Scholar

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. ArXiv, abs/2209.02976. https://doi.org/10.48550/arXiv.2209.02976
  Google Scholar

Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., & Yang, J. (2020). Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. ArXiv, abs/2006.04388. https://doi.org/10.48550/arXiv.2006.04388
  Google Scholar

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 2999–3007). IEEE. https://doi.org/10.1109/ICCV.2017.324
  Google Scholar

Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., & Chen, H. (2023). DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics, 12(10), 2323. https://doi.org/10.3390/electronics12102323
  Google Scholar

Mahareek, E. A. (2024). VP Dataset. https://Universe.Roboflow.Com/al-Azhar-Unversity/Violence-Prediction-in-Surveillance-Videos.
  Google Scholar

Mahareek, E. A., Elsayed, E. K., Eldesouky, N. M., & Eldahshan, K. A. (2024). Detecting anomalies in security cameras with 3D-convolutional neural network and convolutional long short-term memory. International Journal of Electrical and Computer Engineering, 14(1), 993–1004. https://doi.org/10.11591/ijece.v14i1.pp993-1004
  Google Scholar

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), (pp. 6517-6525). IEEE. https://doi.org/10.1109/CVPR.2017.690
  Google Scholar

Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. ArXiv, abs/1804.02767. https://doi.org/10.48550/arXiv.1804.02767
  Google Scholar

Redmon, J. (2016). Darknet: Open source neural networks in c. http://pjreddie.com/darknet/
  Google Scholar

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 779-788). IEEE. https://doi.org/10.1109/CVPR.2016.91
  Google Scholar

Reis, D., Kupec, J., Hong, J., & Daoudi, A. (2023). Real-Time flying object detection with YOLOv8. ArXiv, abs/2305.09972. https://doi.org/10.48550/arXiv.2305.09972
  Google Scholar

Solawetz, J. F. (2023, January 11). What is YOLOv8? The Ultimate Guide. https://blog.roboflow.com/whats-new-in-yolov8/
  Google Scholar

Songire, S. B., Chandrakant Patkar, U., Chate, P. J., Patil, M. A., Wani, L. K., Pathak, A. S., Bhardwaj Shrivas, S., & Patil, U. (2023). Using Yolo V7 development of complete vids solution based on latest requirements to provide highway traffic and incident real time info to the atms control room using Artificial Intelligence. Journal of Survey in Fisheries Sciences, 10(4S), 3444-3456.
  Google Scholar

Tian, Z., Shen, C., Chen, H., & He, T. (2022). FCOS: A simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1922–1933. https://doi.org/10.1109/TPAMI.2020.3032166
  Google Scholar

Verma, R., & Jayant, S. (2022). Cyber crime prediction using Machine Learning. In M. Singh, V. Tyagi, P. K. Gupta, J. Flusser, & T. Ören (Eds.), Advances in Computing and Data Sciences (Vol. 1614, pp. 160–172). Springer International Publishing. https://doi.org/10.1007/978-3-031-12641-3_14
  Google Scholar

Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1571-1580). IEEE. https://doi.org/10.1109/CVPRW50498.2020.00203
  Google Scholar

Wang, C., He, W., Nie, Y., Guo, J., Liu, C., Han, K., & Wang, Y. (2023). Gold-YOLO: Efficient object detector via Gather-and-Distribute mechanism. ArXiv, abs/2309.11331. https://doi.org/10.48550/arXiv.2309.11331
  Google Scholar

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. ArXiv, abs/2207.02696. https://doi.org/10.48550/arXiv.2207.02696
  Google Scholar

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 7464–7475). IEEE. https://doi.org/10.1109/cvpr52729.2023.00721
  Google Scholar

Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. ArXiv, abs/2402.13616. https://doi.org/10.48550/arXiv.2402.13616
  Google Scholar

Zhang, X., Fang, S., Shen, Y., Yuan, X., & Lu, Z. (2024). Hierarchical velocity optimization for connected automated vehicles with cellular vehicle-to-everything communication at continuous signalized intersections. IEEE Transactions on Intelligent Transportation Systems, 25(3), 2944–2955. https://doi.org/10.1109/TITS.2023.3274580
  Google Scholar

Zhang, S., Chi, C., Yao, Y., Lei, Z., & Li, S. Z. (2019). Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. ArXiv, abs/1912.02424. https://doi.org/10.48550/arXiv.1912.02424
  Google Scholar

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2020). Distance-IoU loss: Faster and better learning for bounding box regression. 34th AAAI Conference on Artificial Intelligence (AAAI 2020) (pp. 12993-13000). https://doi.org/10.1609/aaai.v34i07.6999
  Google Scholar

Download


Published
2024-09-30

Cited by

MAHAREEK, E. A., FATHY, D. R., ELSAYED, E. K., ELDESOUKY, N., & ELDAHSHAN, K. A. (2024). VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS . Applied Computer Science, 20(3), 1–16. https://doi.org/10.35784/acs-2024-25

Authors

Esraa Alaa MAHAREEK 
esraa.mahareek@azhar.edu.eg
Al-Azhar University Egypt
https://orcid.org/0000-0002-9042-248X

Authors

Doaa Rizk FATHY 

Al-Azhar University Egypt
https://orcid.org/0000-0002-5625-0282

Authors

Eman Karm ELSAYED 

School of Computer science in Canadian International College CIC Egypt
https://orcid.org/0000-0001-7870-927X

Authors

Nahed ELDESOUKY 

Al-Azhar University Egypt
https://orcid.org/0009-0008-4547-3051

Authors

Kamal Abdelraouf ELDAHSHAN 

Al-Azhar University Egypt
https://orcid.org/0000-0002-9953-5480

Statistics

Abstract views: 205
PDF downloads: 59


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.