EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD
hawkar.mohammad@epu.edu.iqErbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering (Iraq)
https://orcid.org/0009-0008-7010-0150
Shavan ASKAR
Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering (Iraq)
https://orcid.org/0000-0002-9279-8181
Ahmed KAKAMIN
(Iraq)
https://orcid.org/0009-0002-0806-7923
Nayla FAIQ
(Iraq)
https://orcid.org/0009-0002-4182-4199
Abstract
The function of Artificial Intelligence (AI) in Human-Robot Cooperation (HRC) in Industry 4.0 is unequivocally important and cannot be undervalued. It uses Machine Learning (ML) and Deep Learning (DL) to enhance collaboration between humans and robots in smart manufacturing. These algorithms effectively manage and analyze data from sensors, machinery, and other associated entities. As an outcome, they can extract significant insights that can be beneficial in optimizing the manufacturing process overall. Because dumb manufacturing systems hinder coordination, collaboration, and communication among various manufacturing process components. Consequently, efficiency, quality, and productivity all suffer as a whole. Additionally, Artificial Intelligence (AI) makes it possible to implement sophisticated learning processes that enhance human-robot collaboration and effectiveness when it comes to assembly tasks in the manufacturing domain by enabling learning at a level that is comparable to human-human interactions. When Artificial Intelligence (AI) is widely applied in Human-Robot Cooperation (HRC), a new and dynamic environment for human-robot collaboration is created and responsibilities are divided and distributed throughout social and physical spaces. In conclusion, Artificial Intelligence (AI) plays a crucial and indispensable role in facilitating effective and efficient Human-Robot Cooperation (HRC) within the framework of Industry 4.0. The implementation of Artificial Intelligence (AI)-based algorithms, encompassing deep learning, machine learning, and reinforcement learning, is highly consequential as it enhances human-robot collaboration, streamlines production procedures, and boosts overall productivity, quality, and efficiency in the manufacturing industry.
Keywords:
Industry 4.0, Human-Robot Collaboration, Cobot, Human-Robot InteractionReferences
Abdulazeez, D. H., & Askar, S. K. (2024). A novel offloading mechanism leveraging Fuzzy Logic and Deep Reinforcement Learning to improve IoT application performance in a three-layer architecture within the Fog-Cloud environment. IEEE Access, 12, 39936-39952. https://doi.org/10.1109/ACCESS.2024.3376670
DOI: https://doi.org/10.1109/ACCESS.2024.3376670
Google Scholar
Ahmad, M., Sadiq, S., Eshmawi, A. A., Alluhaidan, A. S., Umer, M., Ullah, S., & Nappi, M. (2022). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques. Computers in Biology and Medicine, 145, 105418. https://doi.org/10.1016/j.compbiomed.2022.105418
DOI: https://doi.org/10.1016/j.compbiomed.2022.105418
Google Scholar
Akkaladevi, S. C., Plasch, M., Pichler, A., & Ikeda, M. (2019). Towards reinforcement based learning of an assembly process for human robot collaboration. Procedia Manufacturing, 38, 1491-1498. https://doi.org/10.1016/j.promfg.2020.01.138
DOI: https://doi.org/10.1016/j.promfg.2020.01.138
Google Scholar
Alshahrani, S. T. (2023). Industry 4.0 in “Major Emerging Markets”: A systematic literature review of benefits, use, challenges, and mitigation strategies in supply chain management. Sustainability, 15(20), 14811. https://doi.org/10.3390/su152014811
DOI: https://doi.org/10.3390/su152014811
Google Scholar
Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2020). Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects. Sensors, 20(1), 109. https://doi.org/10.3390/s20010109
DOI: https://doi.org/10.3390/s20010109
Google Scholar
Asad, U., Rasheed, S., Lughmani, W. A., Kazim, T., Khalid, A., & Pannek, J. (2023). Biomechanical modeling of human-robot accident scenarios: A computational assessment for heavy-payload-capacity robots. Applied Sciences, 13(3), 1957. https://doi.org/10.3390/app13031957
DOI: https://doi.org/10.3390/app13031957
Google Scholar
Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
DOI: https://doi.org/10.1016/j.autcon.2022.104440
Google Scholar
Baratta, A., Cimino, A., Gnoni, M. G., & Longo, F. (2022). Human robot collaboration in Industry 4.0: A literature review. Procedia Computer Science, 217, 1887-1895. https://doi.org/10.1016/j.procs.2022.12.389
DOI: https://doi.org/10.1016/j.procs.2022.12.389
Google Scholar
Bi, Z. M., Luo, M., Miao, Z., Zhang, B., Zhang, W. J., & Wang, L. (2021). Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robotics and Computer-Integrated Manufacturing, 67, 102022. https://doi.org/10.1016/j.rcim.2020.102022
DOI: https://doi.org/10.1016/j.rcim.2020.102022
Google Scholar
Borboni, A., Reddy, K. V. V., Elamvazuthi, I., AL-Quraishi, M. S., Natarajan, E., & Azhar Ali, S. S. (2023). The expanding role of Artificial Intelligence in collaborative robots for industrial applications: A systematic review of recent works. Machines, 11(1), 111. https://doi.org/10.3390/machines11010111
DOI: https://doi.org/10.3390/machines11010111
Google Scholar
Buerkle, A., Eaton, W., Lohse, N., Bamber, T., & Ferreira, P. (2021). EEG based arm movement intention recognition towards enhanced safety in symbiotic human-robot collaboration. Robotics and Computer-Integrated Manufacturing, 70, 102137. https://doi.org/10.1016/j.rcim.2021.102137
DOI: https://doi.org/10.1016/j.rcim.2021.102137
Google Scholar
Chen, X., Wang, N., Cheng, H., & Yang, C. (2020). Neural learning enhanced variable admittance control for human-robot collaboration. IEEE Access, 8, 25727-25737. https://doi.org/10.1109/ACCESS.2020.2969085
DOI: https://doi.org/10.1109/ACCESS.2020.2969085
Google Scholar
Cimino, A., Gnoni, M. G., Longo, F., Barone, G., Fedele, M., & Le Piane, D. (2022). Modeling & simulation as Industry 4.0 enabling technology to support manufacturing process design: a real industrial application. Procedia Computer Science, 217, 1877-1886. https://doi.org/10.1016/j.procs.2022.12.388
DOI: https://doi.org/10.1016/j.procs.2022.12.388
Google Scholar
Elsisi, M., Tran, M. Q., Mahmoud, K., Lehtonen, M., & Darwish, M. M. F. (2021). Deep learning-based industry 4.0 and internet of things towards effective energy management for smart buildings. Sensors, 21(4), 1038. https://doi.org/10.3390/s21041038
DOI: https://doi.org/10.3390/s21041038
Google Scholar
Ferrarini, S., Bilancia, P., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2024). A method for the assessment and compensation of positioning errors in industrial robots. Robotics and Computer-Integrated Manufacturing, 85, 102622. https://doi.org/10.1016/j.rcim.2023.102622
DOI: https://doi.org/10.1016/j.rcim.2023.102622
Google Scholar
Fiestas Lopez Guido, J. C., Kim, J. W., Popkowski Leszczyc, P. T. L., Pontes, N., & Tuzovic, S. (2024). Retail robots as sales assistants: how speciesism moderates the effect of robot intelligence on customer perceptions and behaviour. Journal of Service Theory and Practice, 34(1), 127-154. https://doi.org/10.1108/JSTP-04-2023-0123
DOI: https://doi.org/10.1108/JSTP-04-2023-0123
Google Scholar
Fu, J., Lin, H., Xu, W., & Gan, D. (2022). A novel variable stiffness compliant robotic link based on discrete variable stiffness units for safe human-robot interaction. Mechanisms and Robotics Conference, 7(46), V007T07A009. https://doi.org/10.1115/DETC2022-89825
DOI: https://doi.org/10.1115/DETC2022-89825
Google Scholar
Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman, M., & Kragic, D. (2020). Human-centered collaborative robots with deep reinforcement learning. ArXiv, abs/2007.01009. https://doi.org/10.48550/arXiv.2007.01009
Google Scholar
Gomes, N. M., Martins, F. N., Lima, J., & Wörtche, H. (2022). Reinforcement learning for collaborative robots pick-and-place applications: A case study. Automation, 3(1), 223-241. https://doi.org/10.3390/automation3010011
DOI: https://doi.org/10.3390/automation3010011
Google Scholar
Gómez-Hernández, J.-F., Gutiérrez-Hernández, J.-M., Jimeno-Morenilla, A., Sánchez-Romero, J.-L., & Fabregat-Periago, M.-D. (2024). Development of an integrated robotic workcell for automated bonding in footwear manufacturing. IEEE Access, 12, 5066-5080. https://doi.org/10.1109/ACCESS.2024.3350441
DOI: https://doi.org/10.1109/ACCESS.2024.3350441
Google Scholar
Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005
DOI: https://doi.org/10.1561/1100000005
Google Scholar
Guerra-Zubiaga, D. A., dos Santos, M. C., Voicu, R. C., Richards, G., Gosnell, S., Franco Barbosa, G. (2023). A digital twin approach to support a multi-task industrial robot operation using design of experiments. https://doi.org/10.21203/rs.3.rs-3425601/v1
DOI: https://doi.org/10.21203/rs.3.rs-3425601/v1
Google Scholar
Heo, Y. J., Kim, D., Lee, W., Kim, H., Park, J., & Chung, W. K. (2019). Collision detection for industrial collaborative robots: A deep learning approach. IEEE Robotics and Automation Letters, 4(2), 740-746. https://doi.org/10.1109/LRA.2019.2893400
DOI: https://doi.org/10.1109/LRA.2019.2893400
Google Scholar
Hjorth, S., & Chrysostomou, D. (2022). Human-robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robotics and Computer-Integrated Manufacturing, 73, 102208. https://doi.org/10.1016/j.rcim.2021.102208
DOI: https://doi.org/10.1016/j.rcim.2021.102208
Google Scholar
Hopko, S. K., & Mehta, R. K. (2022). Trust in shared-space collaborative robots: Shedding light on the human brain. Human Factors: The Journal of the Human Factors and Ergonomics Society, 66(2), 490-509. https://doi.org/10.1177/00187208221109039
DOI: https://doi.org/10.1177/00187208221109039
Google Scholar
Ibrahim, M. A., & Askar, S. (2023). An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm. IEEE Access, 11, 133607-133622. https://doi.org/10.1109/ACCESS.2023.3337034
DOI: https://doi.org/10.1109/ACCESS.2023.3337034
Google Scholar
Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Significant applications of cobots in the field of manufacturing. Cognitive Robotics, 2, 222-233. https://doi.org/10.1016/j.cogr.2022.10.001
DOI: https://doi.org/10.1016/j.cogr.2022.10.001
Google Scholar
Kakade, S., Patle, B., & Umbarkar, A. (2023). Applications of collaborative robots in agile manufacturing: a review. Robotic Systems and Applications, 3(1), 59-83. https://doi.org/10.21595/rsa.2023.23238
DOI: https://doi.org/10.21595/rsa.2023.23238
Google Scholar
Li, X., Chen, W., & Alrasheedi, M. (2023). Challenges of the collaborative innovation system in public higher education in the era of industry 4.0 using an integrated framework. Journal of Innovation and Knowledge, 8(4), 100430. https://doi.org/10.1016/j.jik.2023.100430
DOI: https://doi.org/10.1016/j.jik.2023.100430
Google Scholar
Maniscalco, U., Minutolo, A., Storniolo, P., & Esposito, M. (2024). Towards a more anthropomorphic interaction with robots in museum settings: An experimental study. Robotics and Autonomous Systems, 171, 104561. https://doi.org/10.1016/j.robot.2023.104561
DOI: https://doi.org/10.1016/j.robot.2023.104561
Google Scholar
Mayr, M., Ahmad, F., Duerr, A., & Krueger, V. (2023). Using knowledge representation and task planning for robot-agnostic skills on the example of contact-rich wiping tasks. ArXiv, abs/2308.14206. https://doi.org/10.48550/arXiv.2308.14206
DOI: https://doi.org/10.1109/CASE56687.2023.10260413
Google Scholar
Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., & Chryssolouris, G. (2015). Design considerations for safe human-robot collaborative workplaces. Procedia CIRP, 37, 248-253. https://doi.org/10.1016/j.procir.2015.08.014
DOI: https://doi.org/10.1016/j.procir.2015.08.014
Google Scholar
Noor Hasnan, N. Z., & Yusoff, Y. M. (2018). Short review: Application areas of Industry 4.0 technologies in food processing sector. 2018 IEEE 16th Student Conference on Research and Development (SCOReD) (pp.1-6). IEEE. https://doi.org/10.1109/SCORED.2018.8711184
DOI: https://doi.org/10.1109/SCORED.2018.8711184
Google Scholar
Othman, U., & Yang, E. (2023). Human-robot collaborations in smart manufacturing environments: Review and outlook †. Sensors, 23(12), 5663. https://doi.org/10.3390/s23125663
DOI: https://doi.org/10.3390/s23125663
Google Scholar
Pagani, R., Nuzzi, C., Ghidelli, M., Borboni, A., Lancini, M., & Legnani, G. (2021). Cobot user frame calibration: Evaluation and comparison between positioning repeatability performances achieved by traditional and vision-based methods. Robotics, 10(1), 45. https://doi.org/10.3390/robotics10010045
DOI: https://doi.org/10.3390/robotics10010045
Google Scholar
Park, J., Kim, T., Gu, C., Kang, Y., & Cheong, J. (2024). Dynamic collision estimator for collaborative robots: A dynamic Bayesian network with Markov model for highly reliable collision detection. Robotics and Computer-Integrated Manufacturing, 86, 102692. https://doi.org/10.1016/j.rcim.2023.102692
DOI: https://doi.org/10.1016/j.rcim.2023.102692
Google Scholar
Prati, E., Peruzzini, M., Pellicciari, M., & Raffaeli, R. (2021). How to include user experience in the design of human-robot interaction. Robotics and Computer-Integrated Manufacturing, 68, 102072. https://doi.org/10.1016/j.rcim.2020.102072
DOI: https://doi.org/10.1016/j.rcim.2020.102072
Google Scholar
Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. M. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. https://doi.org/10.1016/j.measen.2023.100822
DOI: https://doi.org/10.1016/j.measen.2023.100822
Google Scholar
Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in Industry 4.0 - A literature review. Procedia Computer Science, 181, 51-58. https://doi.org/10.1016/j.procs.2021.01.104
DOI: https://doi.org/10.1016/j.procs.2021.01.104
Google Scholar
Segura, P., Lobato-Calleros, O., Ramírez-Serrano, A., & Soria, I. (2021). Human-robot collaborative systems: Structural components for current manufacturing applications. Advances in Industrial and Manufacturing Engineering, 3, 100060. https://doi.org/10.1016/j.aime.2021.100060
DOI: https://doi.org/10.1016/j.aime.2021.100060
Google Scholar
Sharma, I., Gupta, S. K., Mishra, A., & Askar, S. (2023). Synchronous federated learning based multi unmanned aerial vehicles for secure applications. Scalable Computing: Practice and Experiencet, 24(3), 191-201. https://doi.org/10.12694/scpe.v24i3.2136
DOI: https://doi.org/10.12694/scpe.v24i3.2136
Google Scholar
Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) (pp. 1-5). IEEE. https://doi.org/10.1109/ICETST49965.2020.9080724
DOI: https://doi.org/10.1109/ICETST49965.2020.9080724
Google Scholar
Silva, G., Rekik, K., Kanso, A., & Schnitman, L. (2022). Multi-perspective human robot interaction through an augmented video interface supported by deep learning. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1168-1173). https://doi.org/10.1109/RO-MAN53752.2022.9900671
DOI: https://doi.org/10.1109/RO-MAN53752.2022.9900671
Google Scholar
Tosello, E., Castaman, N., & Menegatti, E. (2019). Using robotics to train students for Industry 4.0. IFAC-PapersOnLine, 52(9), 153-158. https://doi.org/10.1016/j.ifacol.2019.08.185
DOI: https://doi.org/10.1016/j.ifacol.2019.08.185
Google Scholar
Wang, S., Zhang, J., Wang, P., Law, J., Calinescu, R., & Mihaylova, L. (2024). A deep learning-enhanced Digital Twin framework for improving safety and reliability in human-robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 85, 102608. https://doi.org/10.1016/j.rcim.2023.102608
DOI: https://doi.org/10.1016/j.rcim.2023.102608
Google Scholar
Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227. https://doi.org/10.1016/j.rcim.2021.102227
DOI: https://doi.org/10.1016/j.rcim.2021.102227
Google Scholar
Zhang, Y., Ding, K., Hui, J., Liu, S., Guo, W., & Wang, L. (2024). Skeleton-RGB integrated highly similar human action prediction in human-robot collaborative assembly. Robotics and Computer-Integrated Manufacturing, 86, 102659. https://doi.org/10.1016/j.rcim.2023.102659
DOI: https://doi.org/10.1016/j.rcim.2023.102659
Google Scholar
Authors
Hawkar ASAADhawkar.mohammad@epu.edu.iq
Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering Iraq
https://orcid.org/0009-0008-7010-0150
Authors
Shavan ASKARErbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering Iraq
https://orcid.org/0000-0002-9279-8181
Statistics
Abstract views: 490PDF downloads: 174
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE, THE UTILIZATION OF 6G IN INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
Similar Articles
- Loubna BOUHSAIEN, Abdellah AZMANI, THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT , Applied Computer Science: Vol. 20 No. 3 (2024)
- Thanh-Lam BUI, Ngoc-Tien TRAN, NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT , Applied Computer Science: Vol. 19 No. 2 (2023)
- Marcin PERY, Robert WASZKOWSKI, COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY , Applied Computer Science: Vol. 20 No. 4 (2024)
- Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA, CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT , Applied Computer Science: Vol. 17 No. 4 (2021)
- Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE, THE UTILIZATION OF 6G IN INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Katarzyna KUREK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK, THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES , Applied Computer Science: Vol. 20 No. 1 (2024)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY, OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT , Applied Computer Science: Vol. 17 No. 3 (2021)
- Anna CZARNECKA, Łukasz SOBASZEK, Antoni ŚWIĆ, 2D IMAGE-BASED INDUSTRIAL ROBOT END EFFECTOR TRAJECTORY CONTROL ALGORITHM , Applied Computer Science: Vol. 14 No. 1 (2018)
- Grzegorz SUCHANEK, Roman FILIPEK, COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION , Applied Computer Science: Vol. 18 No. 3 (2022)
You may also start an advanced similarity search for this article.