EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The purpose of this study is to examine the suitability of machine learning (ML) techniques for predicting students’ performance. By analyzing various ML algorithms, the authors assess the accuracy and reliability of these approaches, considering factors such as data quality, feature selection, and model complexity. The findings indicate that certain ML methods are more effective for student performance forecasting, emphasizing the need for a deliberate evaluation of these factors. This study provides significant contributions to the field of education and reinforces the growing use of ML in decision-making and student performance prediction.
Keywords:
References
Adane, M. D., Deku, J. K., & Asare, E. K. (2023). Performance analysis of Machine Learning algorithms in prediction of student academic performance. Journal of Advances in Mathematics and Computer Science, 38(5), 74-86. https://doi.org/10.9734/jamcs/2023/v38i51762 DOI: https://doi.org/10.9734/jamcs/2023/v38i51762
Agrawal, H., & Mavani, H. (2015). Student performance prediction using machine learning. International Journal of Engineering Research and Technology, 4(3), 111–113. http://dx.doi.org/10.17577/IJERTV4IS030127 DOI: https://doi.org/10.17577/IJERTV4IS030127
Ahajjam, T., Moutaib, M., Aissa, H., Azrour, M., Farhaoui, Y., & Fattah, M. (2022). Predicting students’ final performance using Artificial Neural Networks. Big Data Mining and Analytics, 5(4), 294-301. https://doi.org/10.26599/BDMA.2021.9020030 DOI: https://doi.org/10.26599/BDMA.2021.9020030
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293. https://doi.org/10.3390/educsci13030293 DOI: https://doi.org/10.3390/educsci13030293
Altabrawee, H., Ali, O., & Qaisar, A. (2019). Predicting students’ performance using machine learning techniques. Journal of University of Babylon for Pure and Applied Sciences, 27(1), 194-205. https://doi.org/10.29196/jubpas.v27i1.2108 DOI: https://doi.org/10.29196/jubpas.v27i1.2108
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
Chai, T., & Draxler, R. R. (2014). Root mean square error (rmse) or mean absolute error (mae)?–arguments against avoiding rmse in the literature. Geoscientific model development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014 DOI: https://doi.org/10.5194/gmd-7-1247-2014
He, T. (2015). Xgboost: Extreme gradient boosting. Data Camp. https://rdocumentation.org/packages/xgboost/versions/0.4-2
Chen, Y., & Zhai, L. (2023). A comparative study on student performance prediction using machine learning. Education and Information Technologies, 28, 12039-12057. https://doi.org/10.1007/s10639-023-11672-1 DOI: https://doi.org/10.1007/s10639-023-11672-1
Demir, K., & Güraksın, G. E. (2022). Determining middle school students’ perceptions of the concept of artificial intelligence: A metaphor analysis. Participatory Educational Research, 9(2), 297-312. https://doi.org/10.17275/per.22.41.9.2 DOI: https://doi.org/10.17275/per.22.41.9.2
Fayoumi, A. G., & Hajjar, A. F. (2020). Advanced learning analytics in academic education: Academic performance forecasting based on an artificial neural network. International Journal on Semantic Web and Information Systems, 16(3), 70-87. https://doi.org/10.4018/IJSWIS.2020070105 DOI: https://doi.org/10.4018/IJSWIS.2020070105
Freund, R. J., Wilson, W. J., & Sa, P. (2006). Regression analysis. Elsevier.
Ghorbani, R., & Ghousi, R. (2020). Comparing different resampling methods in predicting students’ performance using machine learning techniques. IEEE Access, 8, 67899–67911. https://doi.org/10.1109/ACCESS.2020.2986809 DOI: https://doi.org/10.1109/ACCESS.2020.2986809
Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classifi- cation: an overview. ArXiv, abs/2008.05756. https://doi.org/10.48550/arXiv.2008.05756
Gull, H., Saqib, M., Iqbal, S. Z., & Saeed, S. (2020). Improving learning experience of students by early prediction of student performance using machine learning. 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1-4). IEEE. https://doi.org/10.1109/INOCON50539.2020.9298266 DOI: https://doi.org/10.1109/INOCON50539.2020.9298266
Harvey, J. L., & Kumar, S. A. P. (2019). A practical model for educators to predict student performance in k-12 education using machine learning, 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 3004-3011). IEEE. https://doi.org/10.1109/SSCI44817.2019.9003147 DOI: https://doi.org/10.1109/SSCI44817.2019.9003147
Kingsford, C., & Salzberg, S. (2008). What are decision trees? Nature Biotechnology, 26, 1011-1013. https://doi.org/10.1038/nbt0908-1011 DOI: https://doi.org/10.1038/nbt0908-1011
Kukkar, A., Mohana, R., Sharma, A., & Nayyar, A. (2023). Prediction of student academic performance based on their emotional wellbeing and interaction on various e-learning platforms. Education and Information Technologies, 28, 9655-9684. https://doi.org/10.1007/s10639-022-11573-9 DOI: https://doi.org/10.1007/s10639-022-11573-9
McDonald, G. C., (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 93-100. https://doi.org/10.1002/wics.14 DOI: https://doi.org/10.1002/wics.14
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7(21). https://doi.org/10.3389/fnbot.2013.00021 DOI: https://doi.org/10.3389/fnbot.2013.00021
Onyema, E. M., Almuzaini, K. K., Onu, F. U., Verma, D., Gregory, U. S., Puttaramaiah, M., & Afriyie, R. K. (2022). Prospects and challenges of using machine learning for academic forecasting. Computational Intelligence and Neuroscience, 2022(1), 5624475. https://doi.org/10.1155/2022/5624475 DOI: https://doi.org/10.1155/2022/5624475
Oyedeji, A. O., Salami Olaolu, A. M., & Abolade, F. O. R. (2020). Analysis and prediction of student academic performance using machine learning. Journal of Information Technology and Computer Engineering, 4(1), 10–15. https://doi.org/10.25077/jitce.4.01.10-15.2020 DOI: https://doi.org/10.25077/jitce.4.01.10-15.2020
Ranstam, J., Cook, J. A. (2018). Lasso regression. British Journal of Surgery, 105(10), 1348. https://doi.org/10.1002/bjs.10895 DOI: https://doi.org/10.1002/bjs.10895
Salas Rueda, R. A., De la cruz Martínez, G., Eslava Cervantes, A. L., Castañeda Martínez, R., & Ramírez Ortega, J. (2022). Teachers’ opinion about collaborative virtual walls and massive open online course during the COVID-19 pandemic. Online Journal of Communication and Media Technologies, 12(1), e202202. https://doi.org/10.30935/ojcmt/11305 DOI: https://doi.org/10.30935/ojcmt/11305
Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on gaussian pro- cess regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1–16. https://doi.org/10.1016/j.jmp.2018.03.001 DOI: https://doi.org/10.1016/j.jmp.2018.03.001
Sekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student performance prediction and classification using machine learning algorithms. 8th International Conference on Educational and Information Technology (pp. 7-11). Association for Computing Machinery. https://doi.org/10.1145/3318396.3318419 DOI: https://doi.org/10.1145/3318396.3318419
Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics, 4(3), 275-294. https://doi.org/10.1002/wics.1198 DOI: https://doi.org/10.1002/wics.1198
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from vle big data using deep learning models. Computers in Human Behavior, 104, 106189. https://doi.org/10.1016/j.chb.2019.106189 DOI: https://doi.org/10.1016/j.chb.2019.106189
Article Details
Abstract views: 718
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
