AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
grzegorz.bocewicz@tu.koszalin.pl
Abstract
The article presents the so-called coin bag problem, which is modeled by linear Diophantine equations. The problem in question involves assessing the contents of a set of coins based on its weight. Since this type of problem is undecidable, a special variant of the problem was proposed for which effective problem-solving algorithms can be developed. In this paper, an original heuristic is presented (an algorithm based on problem decomposition) which allows to solve the coin bag problem in fewer steps compared to a brute force algorithm. The proposed approach was verified in a series of computational experiments. Additionally, an authentication scheme making use of the approach was proposed as an example of potential practical use.
Keywords:
References
Azrour, M., Mabrouki, J., Guezzaz, A., & Farhaoui, Y. (2021). New enhanced authentication protocol for Internet of Things. Big Data Mining and Analytics, 4(1), 1–9. https://doi.org/10.26599/BDMA.2020.9020010 DOI: https://doi.org/10.26599/BDMA.2020.9020010
Barbeau, A. (2003). Pell’s equation. New York: Springer. DOI: https://doi.org/10.1007/b97610
Brody, J., & Verbin, E. (2010). The Coin Problem and Pseudorandomness for Branching Programs. 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 30–39. https://doi.org/10.1109/FOCS.2010.10 DOI: https://doi.org/10.1109/FOCS.2010.10
Clausen, M., & Fortenbacher, A. (1989). Efficient solution of linear diophantine equations. Journal of Symbolic Computation, 8(1–2), 201–216. https://doi.org/10.1016/S0747-7171(89)80025-2 DOI: https://doi.org/10.1016/S0747-7171(89)80025-2
Darmon, H., Diamond, F., & Taylor, R. (1995). Fermat’s last theorem. Current developments in mathematics. DOI: https://doi.org/10.4310/CDM.1995.v1995.n1.a1
Gilbert, W. J., & Pathria, A. (1990). Linear Diophantine Equation. Manuscript.
Haakegaard, R., & Lang, J. (2015). The Elliptic Curve Diffie-Hellman (ECDH).
Jonsson, F., & Tornkvist, M. (2017). RSA authentication in Internet of Things: Technical limitations and industry expectations. Dissertation.
Kane, D. M. (2006). An elementary derivation of the asymptotics of partition functions. The Ramanujan Journal, 11(1), 49–66. https://doi.org/10.1007/s11139-006-5307-x DOI: https://doi.org/10.1007/s11139-006-5307-x
Karimi, E., Kazemi, F., Heidarzadeh, A., & Sprintson, A. (2018). A Simple and Efficient Strategy for the Coin Weighing Problem with a Spring Scale. 2018 IEEE International Symposium on Information Theory (ISIT), 1730–1734. https://doi.org/10.1109/ISIT.2018.8437774 DOI: https://doi.org/10.1109/ISIT.2018.8437774
Matiyasevich, Y. (1993). Hilbert’s 10th Problem. MIT press.
Mordell, L. J. (1969). Diophantine Equations. Academic Press.
Mumtaz, M., Akram, J., & Ping, L. (2019). An RSA Based Authentication System for Smart IoT Environment. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 758–765. https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00112 DOI: https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00112
Picciotto, H. (1987). Math McPuzzle. 85(52). DOI: https://doi.org/10.1163/22116117-90001475
Pólya, G. (1956). On Picture-Writing. The American Mathematical Monthly, 63(10), 689–697. https://doi.org/10.1080/00029890.1956.11988895 DOI: https://doi.org/10.1080/00029890.1956.11988895
Schell, E. D. (1945). Weighed and found wanting. 52(42). DOI: https://doi.org/10.2307/2304840
Stark, H. (1973). Effective estimates of solutions of some diophantine equations. 24(3), 251–259. DOI: https://doi.org/10.4064/aa-24-3-251-259
Tripathi, A. (1978). On a linear Diophantine problem of Frobenius. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 1978(301), 171–178. https://doi.org/10.1515/crll.1978.301.171 DOI: https://doi.org/10.1515/crll.1978.301.171
Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of mathematics. DOI: https://doi.org/10.1007/978-3-0348-9078-6_18
Wright, J. W. (1975). The Change-Making Problem. Journal of the ACM, 22(1), 125–128. https://doi.org/10.1145/321864.321874 DOI: https://doi.org/10.1145/321864.321874
Article Details
Abstract views: 476
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
