AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
wojciech.karpiuk@put.poznan.pl
Abstract
The main objective of the work was to develop a comprehensive model of energy consumption simulation of heavy duty vehicles using the VECTO simulation tool. The research issue was the impact of aerodynamic drag and rolling resistance on fuel consumption and emissions under various driving conditions described in four driving cycles: Urban Delivery, Regional Delivery, Urban, and Suburban. Each cycle differed in driving time, distance and average speed to represent different operational scenarios. The methodology involved defining vehicle parameters such as weight, aerodynamic coefficients and tyre rolling resistance. The main findings show that the impact of both aerodynamic drag and rolling resistance on fuel consumption can be efficiently modelled. It has been proven that the proposed modifications to aerodynamic drag and rolling resistance can reduce fuel consumption by more than 8%. The lowest fuel consumption was achieved in the Regional Delivery cycle, while the Urban cycle had the highest fuel consumption due to frequent vehicle stops. The results show that optimization of vehicle design and its performance can significantly improve energy efficiency and reduce emissions. A computational modelling tool such as VECTO can contribute to sustainable transport solutions and improve the efficiency of heavy duty vehicle.
Keywords:
References
Bajerlein, M., Karpiuk, W., Kurc, B., Smolec, R., & Waligórski, M. (2024). Refining combustion dynamics: Dissolved hydrogen in diesel fuel within turbulent-flow environments. Energies, 17(11), 2446. https://doi.org/10.3390/en17112446 DOI: https://doi.org/10.3390/en17112446
Basma, H., Rodríguez, F., Hildermeier, J., Jahn, A., & Project, R. A. (2022). Electrifying last-mile delivery: A total cost of ownership comparison of battery-electric and diesel lorries in Europe. The International Council on Clean Transportation. https://theicct.org/wp-content/uploads/2022/06/tco-battery-diesel-delivery-trucks-jun2022.pdf
Bayındırlı, C., Akansu, Y. E., & Salman, M. S. (2016). The determination of aerodynamic drag coefficient of truck and trailer model by wind tunnel tests. International Journal of Automotive Engineering and Technologies, 5(2), 53-60. https://doi.org/10.18245/ijaet.11754 DOI: https://doi.org/10.18245/ijaet.11754
Broekaert, S., Grigoratos, T., Savvidis, D., & Fontaras, G. (2021). Assessment of waste heat recovery for heavy-duty vehicles during on-road operation. Applied Thermal Engineering, 191, 116891. https://doi.org/10.1016/J.APPLTHERMALENG.2021.116891 DOI: https://doi.org/10.1016/j.applthermaleng.2021.116891
Colucci, G., Lerede, D., Nicoli, M., & Savoldi, L. (2023). A dynamic accounting method for CO2 emissions to assess the penetration of low-carbon fuels: application to the TEMOA-Italy energy system optimisation model. Applied Energy, 352, 121951. https://doi.org/10.1016/J.APENERGY.2023.121951 DOI: https://doi.org/10.1016/j.apenergy.2023.121951
Curry, T., Liberman, I., Hoffman-Andrews, L., & Lowell, D. (2021, October 15). Reducing aerodynamic drag and rolling resistance from heavy-duty trucks. International Council on Clean Transportation. https://theicct.org/publication/reducing-aerodynamic-drag-and-rolling-resistance-from-heavy-duty-truck
Czyż, Z., Karpiński, P., Gęca, M., & Ulibarrena Diaz, J. (2018a). The air flow influence on the drag force of a sports car. Advances in Science and Technology Research Journal, 12(2), 121-127. https://doi.org/10.12913/22998624/86213 DOI: https://doi.org/10.12913/22998624/86213
Czyż, Z., Karpiński, P., & Sevdim, T. (2018b). Numerical analysis of the drag coefficient of a motorcycle helmet. Applied Computer Science, 14(1), 16-26. https://doi.org/10.23743/acs-2018-02 DOI: https://doi.org/10.35784/acs-2018-02
De Robbio, R., Cameretti, M. C., & Mancaruso, E. (2022). Investigation by modelling of a plug-in hybrid electric commercial vehicle with diesel engine on WLTC. Fuel, 317, 123519. https://doi.org/10.1016/J.FUEL.2022.123519 DOI: https://doi.org/10.1016/j.fuel.2022.123519
Di Pierro, G., Bitsanis, E., Tansini, A., Bonato, C., Martini, G., & Fontaras, G. (2024). Fuel cell electric vehicle characterisation under laboratory and in-use operation. Energy Reports, 11, 611-623. https://doi.org/10.1016/J.EGYR.2023.12.013 DOI: https://doi.org/10.1016/j.egyr.2023.12.013
Eswaranathan, K., Sivakumar, T., De Silva, M. M., & Kumarage, A. S. (2024). Modelling the factors influencing carbon efficiency of consumer choice to promote energy-efficient vehicles. Transport Economics and Management, 2, 130-142 https://doi.org/10.1016/j.team.2024.05.002 DOI: https://doi.org/10.1016/j.team.2024.05.002
European Commission: Joint Research Centre, Zacharof, N., Broekaert, S., & Fontaras, G. (2021). Future CO2 reducing technologies in VECTO : VECTO technology coverage and market uptake. Publications Office. https://data.europa.eu/doi/10.2760/985739
Fontaras, G., Rexeis, M., Dilara, P., Hausberger, S., & Anagnostopoulos, K. (2013). The development of a simulation tool for monitoring heavy-duty vehicle CO2 emissions and fuel consumption in Europe. SAE Technical Papers, 6, 2013-24-0150. https://doi.org/10.4271/2013-24-0150 DOI: https://doi.org/10.4271/2013-24-0150
Grabowski, L. (2021). Modelling research of city bus fuel consumption for different driving cycles. Journal of Physics: Conference Series, 2130, 012001. https://doi.org/10.1088/1742-6596/2130/1/012001 DOI: https://doi.org/10.1088/1742-6596/2130/1/012001
Khosravi, M., Mosaddeghi, F., Oveisi, M., & Khodayari, A. (2015). Aerodynamic drag reduction of heavy vehicles using append devices by CFD analysis. Journal of Central South University, 22, 4645-4652. https://doi.org/10.1007/s11771-015-3015-7 DOI: https://doi.org/10.1007/s11771-015-3015-7
Krause, J., Arcidiacono, V., Maineri, L., Broekaert, S., & Fontaras, G. (2023). Calculating heavy-duty vehicle CO2 emission reduction costs for Green Deal scenarios: Extension of the DIONE model. Transportation Research Procedia, 72, 2597-2603. https://doi.org/10.1016/J.TRPRO.2023.11.788 DOI: https://doi.org/10.1016/j.trpro.2023.11.788
Na, X., & Cebon, D. (2022). Quantifying fuel-saving benefit of low-rolling-resistance tyres from heavy goods vehicle in-service operations. Transportation Research Part D: Transport and Environment, 113, 103501. https://doi.org/10.1016/J.TRD.2022.103501 DOI: https://doi.org/10.1016/j.trd.2022.103501
Qiu, Y., Song, S., & Calstart, R. M. (2022, May). Zero-emission lorry real-world performance in us and europe and implications for china. https://globaldrivetozero.org/publication/zero-emission-truck-real-world-performance-in-us-and-europe-and-implications-for-china/
Seo, J., & Park, S. (2023). Developing an official programme to calculate heavy-duty vehicles CO2 emissions in Korea. Transportation Research Part D: Transport and Environment, 120, 103774. https://doi.org/10.1016/J.TRD.2023.103774 DOI: https://doi.org/10.1016/j.trd.2023.103774
Tong, F., Wolfson, D., Jenn, A., Scown, C. D., & Auffhammer, M. (2021). Energy consumption and charging load profiles from long-haul lorry electrification in the United States. Environmental Research Infrastructure and Sustainability, 1, 025007. https://doi.org/10.1088/2634-4505/ac186a DOI: https://doi.org/10.1088/2634-4505/ac186a
Wahono, B., Santos, W. B., Nur, A., & Amin. (2015). Analysis of range extender electric vehicle performance using vehicle simulator. Energy Procedure, 68, 409-418. https://doi.org/10.1016/j.egypro.2015.03.272 DOI: https://doi.org/10.1016/j.egypro.2015.03.272
Zhang, C., Shen, K., Yang, F., & Yuan, C. (2019). Multiphysics modelling of energy intensity and energy efficiency of electric vehicle operation. CIRP procedure, 80, 322-327. https://doi.org/10.1016/j.procir.2019.01.058 DOI: https://doi.org/10.1016/j.procir.2019.01.058
Article Details
Abstract views: 491
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
