Al-Nawashi, M. M., Al-Hazaimeh, O. M., & Khazaaleh, M. Kh. (2024). New approach for breast cancer detection based on machine learning techniques. Applied Computer Science, 20(1), 1-16. https://doi.org/10.35784/acs-2024-01
DOI: https://doi.org/10.35784/acs-2024-01
Anilkumar, P., & Venugopal, P. (2022). Research contribution and comprehensive review towards the semantic segmentation of aerial images using Deep Learning techniques. Security and Communication Networks, 2022(1), 6010912. https://doi.org/10.1155/2022/6010912
DOI: https://doi.org/10.1155/2022/6010912
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
DOI: https://doi.org/10.1109/TPAMI.2016.2644615
Baran, K. (2024). Application of thermal imaging cameras for smartphone: Seek Thermal Compact Pro and FLIR One Pro for human stress detection – Comparison and study. Applied Computer Science, 20(1), 122–138. https://doi.org/10.35784/acs-2024-08
DOI: https://doi.org/10.35784/acs-2024-08
Cui, B., Zhang, H., Jing, W., Liu, H., and Cui, J. (2022). SRSe-Net: Super-Resolution-Based semantic segmentation network for green tide extraction. Remote Sensing. 14(3), 710. https://doi.org/10.3390/rs14030710
DOI: https://doi.org/10.3390/rs14030710
Elbahri, M., Taleb, N., Ardjoun, S. A. E. M., & Zouaoui, C. M. A. (2024). Few-shot learning with pre-trained layers integration applied to hand gesture recognition for disabled people. Applied Computer Science, 20(2), 1-23. https://doi.org/10.35784/acs-2024-13
DOI: https://doi.org/10.35784/acs-2024-13
EUMETSAT. (2024). OLCI Level-2 Water Full Resolution. http://coda.eumetsat.int/#/home
Fernández-Tejedor, M., Velasco, J. E., & Angelats, E. (2022). Accurate estimation of chlorophyll-a concentration in the coastal areas of the ebro delta (NW Mediterranean) using Sentinel-2 and its application in the selection of areas for mussel aquaculture. Remote Sensing, 14(20), 5235. https://doi.org/10.3390/rs14205235
DOI: https://doi.org/10.3390/rs14205235
Fogg, G. E. (2022). Harmful algae - A perspective. Harmful Algae, 1(1), 1-4. https://doi.org/10.1016/S1568-9883(02)00002-1
DOI: https://doi.org/10.1016/S1568-9883(02)00002-1
Girisha, S., Pai, M. M. M., Verma, U., & Pai, R. M. (2021a). Semantic segmentation with enhanced temporal smoothness using CRF in aerial videos. IEEE Madras Section Conference (MASCON) (pp. 1-5). IEEE. https://doi.org/10.1109/MASCON51689.2021.9563599
DOI: https://doi.org/10.1109/MASCON51689.2021.9563599
Girisha, S., Verma, U., Manohara Pai, M. M., & Pai., R. M. (2021b). UVid-Net: Enhanced semantic segmentation of UAV aerial videos by embedding temporal information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4115-4127. https://doi.org/10.1109/JSTARS.2021.3069909
DOI: https://doi.org/10.1109/JSTARS.2021.3069909
Haji Gholizadeh, M., Melesse, A. M., & Reddi, L. (2016). Spaceborne and airborne sensors in water quality assessment. International Journal of Remote Sensing, 37(14), 3143-3180. https://doi.org/10.1080/01431161.2016.1190477
DOI: https://doi.org/10.1080/01431161.2016.1190477
Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574, 667-670. https://doi.org/10.1038/s41586-019-1648-7
DOI: https://doi.org/10.1038/s41586-019-1648-7
Jaiganesh, S. N. N., Sarangi, R. K., & Shukla, S. (2021). Satellite-based observation of ocean productivity in southeast Arabian Sea using chlorophyll, sea surface temperature and wind datasets. Journal of Earth System Science, 130, 5. https://doi.org/10.1007/s12040-020-01512-y
DOI: https://doi.org/10.1007/s12040-020-01512-y
Kamath, R., Balachandra, M., Vardhan, A., & Maheshwari, U. (2022). Classification of paddy crop and weeds using semantic segmentation. Cogent Engineering, 9(1), 2018791. https://doi.org/10.1080/23311916.2021.2018791
DOI: https://doi.org/10.1080/23311916.2021.2018791
Kinane Daouadji, A., & Bendella, F. (2024). Improving e-learning by facial expression analysis. Applied Computer Science, 20(2), 126-137. https://doi.org/10.35784/acs-2024-20
DOI: https://doi.org/10.35784/acs-2024-20
Kotaridis, I., & Lazaridou, M. (2022). Semantic segmentation using a UNet architecture on Sentinel-2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 119-126. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-119-2022
DOI: https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-119-2022
Kutser, T. (2009). Passive optical remote sensing of cyanobacteria and other Intense phytoplankton blooms in coastal and inland waters. International Journal of Remote Sensing, 30(17), 4401-4425. https://doi.org/10.1080/01431160802562305
DOI: https://doi.org/10.1080/01431160802562305
Li, Z., & Demir, I. (2023). U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding. Science of the Total Environment, 869, 161757. https://doi.org/10.1016/j.scitotenv.2023.161757
DOI: https://doi.org/10.1016/j.scitotenv.2023.161757
Lilay, M. Y., & Taye, G. D. (2023). Semantic segmentation model for land cover classification from satellite images in Gambella National Park, Ethiopia. SN Applied Sciences, 5, 76. https://doi.org/10.1007/s42452-023-05280-4
DOI: https://doi.org/10.1007/s42452-023-05280-4
Ma, J., Zhou, W., Lei, J., & Yu, L. (2023). Adjacent bi-hierarchical network for scene parsing of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 20, 3000705. https://doi.org/10.1109/LGRS.2023.3241648
DOI: https://doi.org/10.1109/LGRS.2023.3241648
Maiyanti, S. I., Desiani, A., Lamin, S., Puspitashati., Arhami, M., Gofar, N., & Cahyana, D. (2023) Rotation-gamma correction augmentation on CNN-dense block for soil image classification. Applied Computer Science, 19(3), 96-115. https://doi.org/10.35784/acs-2023-27
DOI: https://doi.org/10.35784/acs-2023-27
Makhlouf, Z., Meraoumia, A., Lakhdar, L., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28-55. https://doi.org/10.35784/acs-2024-03
DOI: https://doi.org/10.35784/acs-2024-03
Nallapareddy, A., (2022). Detection and classification of vegetation areas from red and near infrared bands of Landsat-8 optical satellite image. Applied Computer Science, 18(1), 45-55. https://doi.org/10.35784/acs-2022-4
DOI: https://doi.org/10.35784/acs-2022-4
Nayak, R. K., Swapna, M., Manche, S. S., Mohanty, P. C., Sheshasai, M. V. R., Dadhwal, V. K., & Kumar, R. (2023). Assessment of chlorophyll-a seasonal cycle in the North Indian Ocean using observations from OCM2, MODIS, and SeaWiFS. Journal of the Indian Society of Remote Sensing, 51, 229-246. https://doi.org/10.1007/s12524-022-01642-4
DOI: https://doi.org/10.1007/s12524-022-01642-4
Ogashawara, I. (2019). The use of Sentinel-3 imagery to monitor cyanobacterial blooms. Environments, 6(6), 60. https://doi.org/10.3390/environments6060060
DOI: https://doi.org/10.3390/environments6060060
Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., & Soyeux, E. (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sensing of Environment, 112(11), 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
DOI: https://doi.org/10.1016/j.rse.2008.06.002
Ravishankar, T., Anil, T. C., Verma, U., Pai, M. M. M., & Pai. R. (2022). MartiNet: An efficient approach for river segmentation in SAR images. IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1-6). IEEE. https://doi.org/10.1109/CONECCT55679.2022.9865830
DOI: https://doi.org/10.1109/CONECCT55679.2022.9865830
Rodríguez-Benito, C. V., Navarro, G., & Caballero, I. (2020). Using Copernicus Sentinel-2 and Sentinel-3 data to monitor harmful algal blooms in Southern Chile during the COVID-19 lockdown. Marine Pollution Bulletin, 161(Part A), 111722. https://doi.org/10.1016/j.marpolbul.2020.111722
DOI: https://doi.org/10.1016/j.marpolbul.2020.111722
Roelke, D., & Buyukates, Y. (2001). The Diversity of harmful algal bloom-triggering mechanisms and the complexity of bloom initiation. Human and Ecological Risk Assessment: An International Journal, 7(5), 1347-1362. https://doi.org/10.1080/20018091095041
DOI: https://doi.org/10.1080/20018091095041
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Seg-mentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. https://doi.org/10.1109/TPAMI.2016.2572683
DOI: https://doi.org/10.1109/TPAMI.2016.2572683
Singh, N. J., & Nongmeikapam, K. (2023). Semantic segmentation of satellite images using Deep-Unet. Arabian Journal for Science and Engineering, 48, 1193–1205. https://doi.org/10.1007/s13369-022-06734-4
DOI: https://doi.org/10.1007/s13369-022-06734-4
Srichandan, S., Baliarsingh, S. K., Samanta, A. Jena, A. K., Lotliker, A. A., Nair, T. M. B., Barik, K. K., & Acharyya, T. (2022). Satellite-based characterization of phytoplankton blooms in coastal waters of the northwestern bay of bengal. Journal of the Indian Society of Remote Sensing, 50, 2221-2228. https://doi.org/10.1007/s12524-022-01597-6
DOI: https://doi.org/10.1007/s12524-022-01597-6
Tendolkar, A., Choraria, M. M., Manohara Pai, S., Girisha, G., Dsouza & Adithya, K. S. (2021). Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach. IEEE International Conference on Autonomous Systems (ICAS) (pp. 1-5). IEEE. https://doi.org/10.1109/ICAS49788.2021.9551116
DOI: https://doi.org/10.1109/ICAS49788.2021.9551116
Tholkapiyan, M., Shanmugam, P., & Suresh, T. (2014). Monitoring of ocean surface algal blooms in coastal and oceanic waters around India. Environmental Monitoring and Assessment, 186, 4129–4137. https://doi.org/10.1007/s10661-014-3685-x
DOI: https://doi.org/10.1007/s10661-014-3685-x
Vase, V. K., Ajay, N., Kumar, R. Jayaraman, J., & Rohit, P. (2022). Evaluation of satellite sensors to compute Chlorophyll-a concentration in the Northeastern Arabian Sea: A validation approach. Journal of the Indian Society of Remote Sensing, 50, 2209-2220. https://doi.org/10.1007/s12524-022-01598-5
DOI: https://doi.org/10.1007/s12524-022-01598-5
Verma, U., Chauhan, A., Manohara, M.P., & Pai, R. (2021). DeepRivWidth: Deep Learning based semantic segmentation approach for river identification and width measurement in SAR images of coastal Karnataka. Computers & Geosciences, 154, 104805. https://doi.org/10.1016/j.cageo.2021.104805
DOI: https://doi.org/10.1016/j.cageo.2021.104805
Wang, Z., Zhang, S., Zhang, C., & Wang, B. (2023). Hidden feature-guided semantic segmentation network for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-17, 5603417. https://doi.org/10.1109/TGRS.2023.3244273
DOI: https://doi.org/10.1109/TGRS.2023.3244273
Yang, N., & Tang, H. (2021). Semantic segmentation of satellite images: A Deep Learning approach integrated with geospatial hash codes. Remote Sensing, 13(14), 2723. https://doi.org/10.3390/rs13142723
DOI: https://doi.org/10.3390/rs13142723
Zhu, S., Wu, Y., & Ma, X. (2023). Deep Learning-based algal bloom identification method from remote sensing images - Take China’s Chaohu Lake as an example. Sustainability, 15(5), 4545. https://doi.org/10.3390/su15054545
DOI: https://doi.org/10.3390/su15054545