A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that impacts movement, speech, dexterity, and cognition. Clinical assessments primarily diagnose PD, but symptoms' variability often leads to misdiagnosis. This study examines ML algorithms to distinguish Healthy People (HP) from People with Parkinson's Disease (PPD). Data from 106 HP and 106 PPD participants, who underwent the Parkinson’s Disease Sleep Test (PDST), Hopkin’s Verbal Learning Test (HVLT), and Clock Drawing Test (CDT) from the Parkinson's Progression Markers Initiative (PPMI) were used. A custom HYBRID dataset was also created by integrating these 3 datasets. Various Machine Learning (ML) Classification Algorithms (CA) were also studied: Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR). Multiple feature sets: the first quartile (Q1: 25 % most important features), second quartile (Q2: 50 % most important features), third quartile (Q3: 75 % most important features), and fourth quartile (Q4: All 100 % features) were generated using various Feature Selection (FS) algorithms and ensemble mechanisms. Results showed that all the ML CA achieved over 73±8.4 % accuracy with individual datasets, while the proposed HYBRID dataset achieved a remarkable accuracy of 98±0.6 %. This study identified the optimal quantity of non-motor features, dataset, the best FS and CA in hierarchical approach for early PD diagnosis and also proved that PD may be diagnosed with great accuracy by analyzing non-motor PD parameters using ML algorithms. This suggests that extended data collection could serve as a digital biomarker for PD diagnosis in the future.
Keywords:
References
Adeli, E., Shi, F., An, L., Wee, C.-Y., Wu, G., Wang, T., & Shen, D. (2016). Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage, 141, 206-219. https://doi.org/10.1016/j.neuroimage.2016.05.054 DOI: https://doi.org/10.1016/j.neuroimage.2016.05.054
Ali, L., Chakraborty, C., He, Z., Cao, W., Imrana, Y., & Rodrigues, J. J. P. C. (2022). A novel sample and feature dependent ensemble approach for Parkinson’s disease detection. Neural Computing and Applications, 35, 15997–16010. https://doi.org/10.1007/s00521-022-07046-2 DOI: https://doi.org/10.1007/s00521-022-07046-2
Alkhatib, R., Diab, M. O., Corbier, C., & Badaoui. M. E. (2020). Machine Learning algorithm for gait analysis and classification on early detection of Parkinson. IEEE Sensors Letters, 4(6), 1-4. https://doi.org/10.1109/LSENS.2020.2994938 DOI: https://doi.org/10.1109/LSENS.2020.2994938
Armañanzas, R., Bielza, C., Chaudhuri, K. R., Martinez-Martin, P., & Larrañaga, P. (2013). Unveiling relevant non-motor Parkinson’s disease severity symptoms using a machine learning approach. Artificial Intelligence in Medicine, 58(3), 195-202. https://doi.org/10.1016/j.artmed.2013.04.002 DOI: https://doi.org/10.1016/j.artmed.2013.04.002
Benedict, R. H. B., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins verbal learning test - Revised: Normative data and analysis of inter-form and test-retest reliability. Clinical Neuropsychologist, 12(1), 43-55. https://doi.org/10.1076/clin.12.1.43.1726 DOI: https://doi.org/10.1076/clin.12.1.43.1726
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. DOI: https://doi.org/10.1023/A:1010933404324
Chaudhuri, K. R., Pal, S., DiMarco, A., Whately-Smith, S., Bridgman, K., Mathew, R., Pezzela, F. R., Forbes, A., Högl, B., & Trenkwalder, C. (2002). The Parkinson’s disease sleep scale: a new instrument for assessing sleep and nocturnal disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 73(6), 629-635. https://doi.org/10.1136/jnnp.73.6.629 DOI: https://doi.org/10.1136/jnnp.73.6.629
Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease: a review. JAMA, 311(16), 1670–1683. https://doi.org/10.1001/jama.2014.3654 DOI: https://doi.org/10.1001/jama.2014.3654
Corani, G., & Benavoli, A. (2015). A bayesian approach for comparing cross-validated algorithms on multiple data sets. Machine Learning, 100, 285-304. https://doi.org/10.1007/s10994-015-5486-z DOI: https://doi.org/10.1007/s10994-015-5486-z
Cordella, F., Paffi, A., & Pallotti, A. (2021). Classification-based screening of Parkinson’s disease patients through voice signal. 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). IEEE. https://doi.org/10.1109/MeMeA52024.2021.9478683 DOI: https://doi.org/10.1109/MeMeA52024.2021.9478683
De Lau, L. M. L., & Breteler, M. M. B (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525-535. https://doi.org/10.1016/S1474-4422(06)70471-9 DOI: https://doi.org/10.1016/S1474-4422(06)70471-9
Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., & Faundez-Zanuy, M. (2014). Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), 508-516. https://doi.org/10.1109/tnsre.2014.2359997 DOI: https://doi.org/10.1109/TNSRE.2014.2359997
Govindu, A., & Palwe, S. (2023). Early detection of Parkinson's disease using machine learning. Procedia Computer Science, 218, 249-261. https://doi.org/10.1016/j.procs.2023.01.007 DOI: https://doi.org/10.1016/j.procs.2023.01.007
Gunakala, A., & Shahid, A. H. (2023). A comparative study on performance of basic and ensemble classifiers with various datasets. Applied Computer Science, 19(1), 107-132. https://doi.org/10.35784/acs-2023-08 DOI: https://doi.org/10.35784/acs-2023-08
Haq, A. U., Li, J. P., Memon, M. H., Khan, J., Malik, A., Ahmad, T., Ali, A., Nazir, S., Ahad, I., & Shahid, M. (2019). Feature selection based on L1-Norm support vector machine and effective recognition system for Parkinson’s Disease using voice recordings. IEEE Access, 7, 37718-37734. https://doi.org/10.1109/ACCESS.2019.2906350 DOI: https://doi.org/10.1109/ACCESS.2019.2906350
Hosmer, D. W., Lemeshow, S. H., & Sturdivant, R. X. (2013). Applied Logistic Regression. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118548387
Huang, F., Xu, H., Shen, T., & Jin, L. (2021). Recognition of Parkinson's Disease based on residual Neural Network and voice diagnosis. 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp. 381-386). IEEE. http://dx.doi.org/10.1109/ITNEC52019.2021.9586915 DOI: https://doi.org/10.1109/ITNEC52019.2021.9586915
Mabrouk, R., Chikhaoui, B., & Bentabet, L. (2018). Machine learning based classification using clinical and DaTSCAN SPECT imaging features: a study on Parkinson’s disease and SWEDD. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), 170-177. https://doi.org/10.1109/TRPMS.2018.2877754 DOI: https://doi.org/10.1109/TRPMS.2018.2877754
Mainland, B. J., & Shulman, K. I. (2017). Clock drawing test. In A. J. Larner (Ed.), Cognitive Screening Instruments (pp. 67–108). Springer International Publishing. https://doi.org/10.1007/978-3-319-44775-9_5 DOI: https://doi.org/10.1007/978-3-319-44775-9_5
Martinez-Eguiluz, M., Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Perona, I., Murueta-Goyena, A., Acera, M., Del Pino, R., Tijero, B., Gomez-Esteban, J. C., & Gabilondo, I. (2023). Diagnostic classification of Parkinson’s disease based on non-motor manifestations and machine learning strategies. Neural Computing and Applications, 35, 5603-5617. https://doi.org/10.1007/s00521-022-07256-8 DOI: https://doi.org/10.1007/s00521-022-07256-8
Mei, J., Desrosiers, C., & Frasnelli, J. (2021). Machine Learning for the diagnosis of Parkinson's disease: A review of literature. Frontiers in Aging Neuroscience, 13, 633752. https://doi.org/10.3389/fnagi.2021.633752 DOI: https://doi.org/10.3389/fnagi.2021.633752
Moradi, S., Tapak, L., & Afshar, S. (2022). Identification of novel non invasive diagnostics biomarkers in the Parkinson’s diseases and improving the disease classification using support vector machine. BioMed Research International, 2022(1), 009892. https://doi.org/10.1155/2022/5009892 DOI: https://doi.org/10.1155/2022/5009892
Nuvoli, S., Spanu, A., Fravolini, M. L., Bianconi, F., Cascianelli, S., Madeddu, G., & Palumbo, B. (2020). [123i] Metaiodobenzylguanidine (MIBG) cardiac scintigraphy and automated classification techniques in Parkinsonian disorders. Molecular Imaging and Biology, 22(3), 703-710. https://doi.org/10.1007/s11307-019-01406-6 DOI: https://doi.org/10.1007/s11307-019-01406-6
Pahwa, R., & Lyon, K. E. (2010). Early diagnosis of Parkinson’s disease: recommendations from diagnostic clinical guidelines. The American Journal Managed Care, 16, 94-99.
Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In: Machine Learning (pp. 101-121). Elsevier. http://dx.doi.org/10.1016/B978-0-12-815739-8.00006-7 DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7
Prashanth, R., Roy, S. D., Mandal, P. K., & Ghosh, S. (2014). Parkinson’s disease detection using olfactory loss and REM sleep disorder features. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5764-5767). IEEE. https://doi.org/10.1109/embc.2014.6944937 DOI: https://doi.org/10.1109/EMBC.2014.6944937
Raundale, P., Thosar, C., & Rane, S. (2021). Prediction of Parkinson’s disease and severity of the disease using Machine Learning and Deep Learning algorithm. 2021 2nd International Conference for Emerging Technology (INCET) (pp. 1-5). IEEE. https://doi.org/10.1109/INCET51464.2021.9456292 DOI: https://doi.org/10.1109/INCET51464.2021.9456292
Ricciardi, C., Amboni, M., De Santis, C., Ricciardelli, G., Improta, G., D’Addio, G., Cuoco, S., Picillo, M., Barone, P., & Cesarelli, M. (2020). Machine learning can detect the presence of mild cognitive impairment in patients affected by Parkinson’s disease. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). IEEE. https://doi.org/10.1109/MeMeA49120.2020.9137301 DOI: https://doi.org/10.1109/MeMeA49120.2020.9137301
Sakar, B. E., Isenkul M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. (2013). Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Informatics, 17(4), 828-834. https://doi.org/10.1109/jbhi.2013.2245674 DOI: https://doi.org/10.1109/JBHI.2013.2245674
Schrag, A., Jahanshahi, M., & Quinn, N. (2000). How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Movement Disorders, 15(6), 1112-1118. https://doi.org/10.1002/1531-8257(200011)15:6%3C1112::aid-mds1008%3E3.0.co;2-a DOI: https://doi.org/10.1002/1531-8257(200011)15:6<1112::AID-MDS1008>3.0.CO;2-A
Smyth, C., Anjum, M. F., Ravi, S., Denison, T., Starr, P., & Little, S. (2023). Adaptive deep brain stimulation for sleep stage targeting in Parkinson’s disease. Brain Stimulation, 16(5), 1292-1296. https://doi.org/10.1016/j.brs.2023.08.006 DOI: https://doi.org/10.1016/j.brs.2023.08.006
Thangaleela, S., Sivamaruthi, B. S., Kesika, P., Mariappan, S., Rashmi, S., Choeisoongnern, T., Sittiprapaporn, P., & Chaiyasut, C. (2023). Neurological insights into sleep disorders in Parkinson’s disease. Brain Sciences, 13(8), 1202. https://doi.org/10.3390/brainsci13081202 DOI: https://doi.org/10.3390/brainsci13081202
Trenkwalder, C., Kohnen, R., Högl, B., Metta, V., Sixel-Döring, F., Frauscher, B., Hülsmann, J., Martinez-Martin, P., & Chaudhuri, K. R. (2011). Parkinson’s disease sleep scale-validation of the revised version PDSS-2. Movement Disorders, 26(4), 644-652. https://doi.org/10.1002/mds.23476 DOI: https://doi.org/10.1002/mds.23476
Vellido, A. (2020). The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Computing and Applications, 32, 18069-18083. https://doi.org/10.1007/s00521-019-04051-w DOI: https://doi.org/10.1007/s00521-019-04051-w
Wang, W., Lee, J., Harrou, F., & Sun, Y. (2020). Early detection of Parkinson’s disease using Deep Learning and Machine Learning. IEEE Access, 8, 147635-147646. https://doi.org/10.1109/ACCESS.2020.3016062 DOI: https://doi.org/10.1109/ACCESS.2020.3016062
Wodzinski, M., Skalski, A., Hemmerling, D., Orozco-Arroyave, J. R., & Nöth, E. (2019). Deep Learning approach to Parkinson’s disease detection using voice recordings and convolutional Neural Network dedicated to image classification. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 717-720). IEEE. https://doi.org/10.1109/EMBC.2019.8856972 DOI: https://doi.org/10.1109/EMBC.2019.8856972
Wroge, T. J., Özkanca, Y., Demiroglu, C., Si, D., Atkins, D. C., & Ghomi, R. H. (2018). Parkinson’s disease diagnosis using Machine Learning and voice. 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-7). IEEE. https://doi.org/10.1109/SPMB.2018.8615607 DOI: https://doi.org/10.1109/SPMB.2018.8615607
Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: a review of algorithms and applications. ArXiv, abs/2003.05689. https://doi.org/10.48550/arXiv.2003.05689
Zhang, H. (2004). The optimality of naive bayes.The Florida AI Research Society.
Article Details
Abstract views: 537
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
