Anderson, J. T., Van Holliday, D., Kloser, R., Reid, D. G., & Simard, Y. (2008). Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science, 65(6), 1004-1011. https://doi.org/10.1093/icesjms/fsn061
DOI: https://doi.org/10.1093/icesjms/fsn061
Balk, H., & Lindem, T. (2015). Sonar4 and Sonar5-Pro post processing systems: operator manual version 6.0.3. University of Oslo. https://www.scribd.com/document/477760502/SonarX-Manual-v603-2014-12-30-pdf
Bartholomä, A., Capperucci, R. M., Becker, L., Coers, S. I. I., & Battershill, C. N. (2020). Hydrodynamics and hydroacoustic mapping of a benthic seafloor in a coarse grain habitat of the German Bight. Geo-Marine Letters, 40(2), 183-195. https://doi.org/10.1007/s00367-019-00599-7
DOI: https://doi.org/10.1007/s00367-019-00599-7
Bejarano, S., Mumby, P. J., Hedley, J. D., & Sotheran, I. (2010). Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sensing of Environment, 114(11), 2768-2778. https://doi.org/10.1016/j.rse.2010.06.012
DOI: https://doi.org/10.1016/j.rse.2010.06.012
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
DOI: https://doi.org/10.1016/j.isprsjprs.2016.01.011
Bravo, F., & Grant, J. (2020). Benthic habitat mapping and sediment nutrient fluxes in a shallow coastal environment in Nova Scotia, Canada. Estuarine, Coastal and Shelf Science, 242, 106816. https://doi.org/10.1016/j.ecss.2020.106816
DOI: https://doi.org/10.1016/j.ecss.2020.106816
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. https://doi.org/10.1007/BF00058655
DOI: https://doi.org/10.1007/BF00058655
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
DOI: https://doi.org/10.1023/A:1010933404324
Brown, C. J., Smith, S. J., Lawton, P., & Anderson, J. T. (2011). Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science, 92(3), 502-520. https://doi.org/10.1016/j.ecss.2011.02.007
DOI: https://doi.org/10.1016/j.ecss.2011.02.007
Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). CRC Press.
DOI: https://doi.org/10.1201/9780429052729
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
DOI: https://doi.org/10.1007/BF00994018
Diesing, M., Green, S. L., Stephens, D., Lark, R. M., Stewart, H. A., & Dove, D. (2014). Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004
DOI: https://doi.org/10.1016/j.csr.2014.05.004
Fajaryanti, R., & Kang, M. (2019). A preliminary study on seabed classification using a scientific echosounder. Journal of the Korean Society of Fisheries Technology, 55, 39-49. https://doi.org/10.3796/KSFOT.2019.55.1.039
DOI: https://doi.org/10.3796/KSFOT.2019.55.1.039
Freitas, R., Ricardo, F., Pereira, F., Sampaio, L., Carvalho, S., Gaspar, M., Quintino, V., & Rodrigues, A. M. (2011). Benthic habitat mapping: Concerns using a combined approach (acoustic, sediment and biological data). Estuarine, Coastal and Shelf Science, 92(4), 598-606. https://doi.org/10.1016/j.ecss.2011.02.022
DOI: https://doi.org/10.1016/j.ecss.2011.02.022
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https:/doi.org/10.1016/j.patrec.2005.08.011
DOI: https://doi.org/10.1016/j.patrec.2005.08.011
Goff, J. A., Kraft, B. J., Mayer, L. A., Schock, S. G., Sommerfield, C. K., Olson, H. C., Gulick, S. P. S., & Nordfjord, S. (2004). Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties. Marine Geology, 209(1-4), 147-172. https://doi.org/10.1016/j.margeo.2004.05.030
DOI: https://doi.org/10.1016/j.margeo.2004.05.030
Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. (2000). Remote sensing: handbook for tropical coastal management. UNESCO Pub.
Gumusay, M., Bakırman, T., Tüney Kızılkaya, I., & Aykut, N. (2018). A review of seagrass detection, mapping and monitoring applications using acoustic systems. European Journal of Remote Sensing, 52(1), 1-29. https://doi.org/10.1080/22797254.2018.1544838
DOI: https://doi.org/10.1080/22797254.2018.1544838
Hamilton, L. (2001). Acoustic Seabed Classification Systems. DSTO Aeronautical and Maritime Research Laboratory.
Hamouda, A., Soliman, K., El-Gharabawy, S., & Nassar, M. (2019). Comparative study between acoustic signals and images for detecting seabed features. Egyptian Journal of Aquatic Research, 45(2), 145-151. https:/doi.org/10.1016/j.ejar.2019.03.002
DOI: https://doi.org/10.1016/j.ejar.2019.03.002
Hamuna, B., Dimara, L., Pujiyati, S., & Natih, N. (2018). Correlation of substrate fraction percentage with acoustic backscattering strength from single beam echosounder detection. AACL Bioflux, 11, 1343-1351.
Hamuna, B., Pujiyati, S., Gaol, J., & Hestirianoto, T. (2023). Spatial distribution of benthic habitats in Kapota Atoll (Wakatobi National Park, Indonesia) using remote sensing imagery. Biodiversitas Journal of Biological Diversity, 24(7). https://doi.org/10.13057/biodiv/d240706
DOI: https://doi.org/10.13057/biodiv/d240706
Hasan, R. C., Ierodiaconou, D., & Monk, J. (2012). Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sensing, 4(11), 3427-3443. https://www.mdpi.com/2072-4292/4/11/3427
DOI: https://doi.org/10.3390/rs4113427
Henriques, V., Guerra, M. T., Mendes, B., Gaudêncio, M. J., & Fonseca, P. (2015). Benthic habitat mapping in a Portuguese Marine Protected Area using EUNIS: An integrated approach. Journal of Sea Research, 100, 77-90. https://doi.org/10.1016/j.seares.2014.10.007
DOI: https://doi.org/10.1016/j.seares.2014.10.007
Hilgert, S., Kiemle, L., Fuchs, S., & Wagner, A. (2016). Investigation of echo sounding parameters for the characterisation of bottom sediments in a sub-tropical reservoir. Advances in Oceanography and Limnology, 7(1). https://doi.org/10.4081/aiol.2016.5623
DOI: https://doi.org/10.4081/aiol.2016.5623
Huang, Z., Siwabessy, P. J., Heqin, C., & Nichol, S. (2018). Using multibeam backscatter data to investigate sediment-acoustic relationships. Journal of Geophysical Research: Oceans, 123(7), 4649-4665. https://doi.org/10.1029/2017JC013638
DOI: https://doi.org/10.1029/2017JC013638
Lee, W. S., & Lin, C. Y. (2018). Mapping of tropical marine benthic habitat: Hydroacoustic classification of coral reefs environment using single-beam (RoxAnn™) system. Continental Shelf Research, 170, 1-10. https://doi.org/10.1016/j.csr.2018.09.012
DOI: https://doi.org/10.1016/j.csr.2018.09.012
Lumivero. (2023). XLSTAT statistical and data analysis solution. https://www.xlstat.com/en
Manik, H., Mamun, A., & Hestirianoto, T. (2014). Computation of single beam echo sounder signal for underwater objects detection and quantification. International Journal of Advanced Computer Science and Applications, 5(5). https://doi.org/10.14569/IJACSA.2014.050514
DOI: https://doi.org/10.14569/IJACSA.2014.050514
McIntyre, K., McLaren, K., & Prospere, K. (2018). Mapping shallow nearshore benthic features in a Caribbean marine-protected area: assessing the efficacy of using different data types (hydroacoustic versus satellite images) and classification techniques. International Journal of Remote Sensing, 39(4), 1117-1150. https://doi.org/10.1080/01431161.2017.1395924
DOI: https://doi.org/10.1080/01431161.2017.1395924
McLaren, K., McIntyre, K., & Prospere, K. (2019). Using the random forest algorithm to integrate hydroacoustic data with satellite images to improve the mapping of shallow nearshore benthic features in a marine protected area in Jamaica. GIScience & Remote Sensing, 56(7), 1065-1092. https://doi.org/10.1080/15481603.2019.1613803
DOI: https://doi.org/10.1080/15481603.2019.1613803
Misiuk, B., & Brown, C. J. (2024). Benthic habitat mapping: A review of three decades of mapping biological patterns on the seafloor. Estuarine, Coastal and Shelf Science, 296, 108599. https://doi.org/10.1016/j.ecss.2023.108599
DOI: https://doi.org/10.1016/j.ecss.2023.108599
Moszynski, M., & Hedgepeth, J. B. (2000). Using single-beam side-lobe observations of fish echoes for fish target strength and abundance estimation in shallow water. Aquatic Living Resources, 13(5), 379-383. https://doi.org/https://doi.org/10.1016/S0990-7440(00)01087-1
DOI: https://doi.org/10.1016/S0990-7440(00)01087-1
Nemani, S., Cote, D., Misiuk, B., Edinger, E., Mackin-McLaughlin, J., Templeton, A., Shaw, J., & Robert, K. (2022). A multi-scale feature selection approach for predicting benthic assemblages. Estuarine, Coastal and Shelf Science, 277, 108053. https:/doi.org/10.1016/j.ecss.2022.108053
DOI: https://doi.org/10.1016/j.ecss.2022.108053
Nguyen, T., Liquet, B., Mengersen, K., & Sous, D. (2021). Mapping of coral reefs with multispectral satellites: A review of recent papers. Remote Sensing, 13(21), 4470. https://doi.org/10.3390/rs13214470
DOI: https://doi.org/10.3390/rs13214470
Penrose, J., Siwabessy, P. J., Gavrilov, A., Parnum, I., Hamilton, L., Bickers, A., Brooke, B., Ryan, D., & Kennedy, P. (2006). Acoustic Techniques for Seabed Classification. CRC for Coastal Zone, Estuary & Waterway Management.
Pijanowski, B., & Brown, C. (2022). Grand challenges in acoustic remote sensing: Discoveries to support a better understanding of our changing planet. Frontiers in Remote Sensing, 2. https://doi.org/10.3389/frsen.2021.824848
DOI: https://doi.org/10.3389/frsen.2021.824848
Poulain, T., Argillier, C., Gevrey, M., & Guillard, J. (2011). Identifying lakebed nature: Is it feasible with a combination of echosounder and Sonar5-pro? Advances in Oceanography and Limnology, 2(1), 49-53. https://doi.org/10.1080/19475721.2011.565803
DOI: https://doi.org/10.1080/19475721.2011.565803
Pujiyati, S., Hamuna, B., Rohilah, Hisyam, M., Srimariana, E. S., & Natih, I. N. M. (2022). Distributions of environmental parameters and Plankton’s volume backscattering strength at Yos Sudarso Bay, Jayapura, Indonesia. Egyptian Journal of Aquatic Research, 48(1), 37-44. https://doi.org/https://doi.org/10.1016/j.ejar.2021.08.001
DOI: https://doi.org/10.1016/j.ejar.2021.08.001
Reshitnyk, L., Costa, M., Robinson, C., & Dearden, P. (2014). Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters. Remote Sensing of Environment, 153, 7-23. https://doi.org/10.1016/j.rse.2014.07.016
DOI: https://doi.org/10.1016/j.rse.2014.07.016
Riegl, B. M., & Purkis, S. J. (2005). Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sensing of Environment, 95(1), 96-114. https://doi.org/10.1016/j.rse.2004.11.016
DOI: https://doi.org/10.1016/j.rse.2004.11.016
Sánchez-Carnero, N., Rodríguez-Pérez, D., Llorens, S., Orenes-Salazar, V., Ortolano, A., & García-Charton, J. A. (2023). An expeditious low-cost method for the acoustic characterization of seabeds in a Mediterranean coastal protected area. Estuarine, Coastal and Shelf Science, 281, 108204. https://doi.org/10.1016/j.ecss.2022.108204
DOI: https://doi.org/10.1016/j.ecss.2022.108204
Shao, H., Kiyomoto, S., Kawauchi, Y., Kadota, T., Nakagawa, M., Yoshimura, T., Yamada, H., Acker, T., & Moore, B. (2021). Classification of various algae canopy, algae turf, and barren seafloor types using a scientific echosounder and machine learning analysis. Estuarine, Coastal and Shelf Science, 255, 107362. https://doi.org/10.1016/j.ecss.2021.107362
DOI: https://doi.org/10.1016/j.ecss.2021.107362
Sklar, E., Bushuev, E., Misiuk, B., Morissette, G., & Brown, C. (2024). Seafloor morphology and substrate mapping in the Gulf of St Lawrence, Canada, using machine learning approaches. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1306396
DOI: https://doi.org/10.3389/fmars.2024.1306396
Solikin, S., Manik, H., Pujiyati, S., & Susilohadi, S. (2018). Measurement of bottom backscattering strength using single-beam echosounder. Journal of Physics: Conference Series, 1075, 012036. https://doi.org/10.1088/1742-6596/1075/1/012036
DOI: https://doi.org/10.1088/1742-6596/1075/1/012036
Stephens, D., & Diesing, M. (2014). A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLOS ONE, 9(4), e93950. https://doi.org/10.1371/journal.pone.0093950
DOI: https://doi.org/10.1371/journal.pone.0093950
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988-999. https://doi.org/10.1109/72.788640
DOI: https://doi.org/10.1109/72.788640
Vassallo, P., Bianchi, C. N., Paoli, C., Holon, F., Navone, A., Bavestrello, G., Cattaneo Vietti, R., & Morri, C. (2018). A predictive approach to benthic marine habitat mapping: Efficacy and management implications. Marine Pollution Bulletin, 131(Part A), 218-232. https://doi.org/10.1016/j.marpolbul.2018.04.016
DOI: https://doi.org/10.1016/j.marpolbul.2018.04.016
Wadoux, A. M. J. C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https://doi.org/10.1016/j.ecolmodel.2021.109692
DOI: https://doi.org/10.1016/j.ecolmodel.2021.109692
Wölfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C. W., Dorschel, B., Ferrini, V., Huvenne, V. A. I., Jakobsson, M., Jencks, J., Johnston, G., Lamarche, G., Mayer, L., Millar, D., Pedersen, T. H., Picard, K., Reitz, A., Schmitt, T., Visbeck, M., Weatherall, P., & Wigley, R. (2019). Seafloor mapping – The challenge of a truly global ocean bathymetry. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00283
DOI: https://doi.org/10.3389/fmars.2019.00283