SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Magnetic resonance imaging (MRI) is a key method for imaging human tissues and organs. The accuracy of medical diagnosis is greatly affected by the quality of MRI images. Sometimes, MRI images are obtained blurry due to various inevitable constraints related to the imaging equipment, which affects the detection of important features in the image. Several sharpening methods were introduced, but not all were successful in this task, as artifacts may be introduced, contrast may be changed, and high complexity may be involved. Thus, this paper introduces a guided-subsumed unsharp mask filter (GSUM) to improve the sharpness of MRI images. The GSUM utilizes an improved guided filter instead of the low-pass Gaussian filter and a dynamic sharpening parameter. The improved guided filter employs a hybrid procedure instead of the mean filter in the smoothing process and relies on an adaptive regularization parameter. The applied modifications eliminated the overshooting and halo effects of the original unsharp masking and the guided filter, resulting in better-quality images. The GSUM was tested with real-blurry MRI images, evaluated using three no-reference metrics, and compared with six other algorithms. The metric scores indicate that the proposed filter can surpass existing methods, as it produced better results with average readings of 24.2074 in PIQE, 0.6878 in BLUR, and 5.7944 in FISH. It also scored a fast computation time, averaging 0.3384 seconds.
Keywords:
References
Al-Ameen, Z., Al-Healy, M. A., & Hazim, R. A. (2020). Anisotropic diffusion-based unsharp masking for sharpness improvement in digital images. Journal of Soft Computing and Decision Support Systems, 7(1), 7-12.
Al-Ameen, Z., Muttar, A., & Al-Badrani, G. (2019). Improving the sharpness of digital image using an amended unsharp mask filter. International Journal of Image, Graphics and Signal Processing, 11(3), 1-9. https://doi.org/10.5815/ijigsp.2019.03.01 DOI: https://doi.org/10.5815/ijigsp.2019.03.01
Bogdan, V., Bonchiş, C., & Orhei, C. (2024). An image sharpening technique based on dilated filters and 2D-DWT image fusion. 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP) (pp. 591-598). SciTePress. https://doi.org/10.5220/0012416600003660 DOI: https://doi.org/10.5220/0012416600003660
Calder, J., Mansouri, A., & Yezzi, A. (2010). Image sharpening via Sobolev gradient flows. SIAM Journal on Imaging Sciences, 3(4), 981-1014. https://doi.org/10.1137/090771260 DOI: https://doi.org/10.1137/090771260
Cao, G., Zhao, Y., Ni, R., & Kot, A. C. (2011). Unsharp masking sharpening detection via overshoot artifacts analysis. IEEE Signal Processing Letters, 18(10), 603-606. https://doi.org/10.1109/LSP.2011.2164791 DOI: https://doi.org/10.1109/LSP.2011.2164791
Chen, T. J. (2019). An adaptive image sharpening scheme. Multi Conference on Computer Science and Information Systems, MCCSIS 2019 - Proceedings of the International Conferences on Interfaces and Human Computer Interaction 2019, Game and Entertainment Technologies 2019 and Computer Graphics, Visualization, Comp (pp. 396-400). International Association for development of the information society. https://doi.org/10.33965/g2019_201906c056 DOI: https://doi.org/10.33965/g2019_201906C056
Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007). The blur effect: perception and estimation with a new no-reference perceptual blur metric. Human Vision and Electronic Imaging, 6492. https://doi.org/10.1117/12.702790 DOI: https://doi.org/10.1117/12.702790
Demir, Y., & Kaplan, N. H. (2023). Low-light image enhancement based on sharpening-smoothing image filter. Digital Signal Processing, 138, 104054. https://doi.org/10.1016/j.dsp.2023.104054 DOI: https://doi.org/10.1016/j.dsp.2023.104054
Deng, G. (2010). A generalized unsharp masking algorithm. IEEE Transactions on Image Processing, 20(5), 1249-1261. https://doi.org/10.1109/TIP.2010.2092441 DOI: https://doi.org/10.1109/TIP.2010.2092441
Deng, G., Galetto, F., Alnasrawi, M., & Waheed, W. (2021). A guided edge-aware smoothing-sharpening filter based on patch interpolation model and generalized gamma distribution. IEEE Open Journal of Signal Processing, 2, 119-135. https://doi.org/10.1109/OJSP.2021.3063076 DOI: https://doi.org/10.1109/OJSP.2021.3063076
Edla, D. R., Simi, V. R., & Joseph, J. (2022). A noise-robust and overshoot-free alternative to unsharp masking for enhancing the acuity of MR images. Journal of Digital Imaging, 35, 1041-1060. https://doi.org/10.1007/s10278-022-00585-z DOI: https://doi.org/10.1007/s10278-022-00585-z
Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing, 3rd Edition. Pearson Prentice Hall.
Gui, Z., & Liu, Y. (2011). An image sharpening algorithm based on fuzzy logic. Optik, 122(8), 697-702. https://doi.org/10.1016/j.ijleo.2010.05.010 DOI: https://doi.org/10.1016/j.ijleo.2010.05.010
Habee, N. J. (2021). Performance enhancement of medical image fusion based on DWT and sharpening Wiener filter. Jordanian Journal of Computers and Information Technology, 7(2), 118-129. https://doi.org/10.5455/jjcit.71-1610049522 DOI: https://doi.org/10.5455/jjcit.71-1610049522
He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397-1409. https://doi.org/10.1109/TPAMI.2012.213 DOI: https://doi.org/10.1109/TPAMI.2012.213
Holder, R. P., & Tapamo, J. R. (2017). Improved gradient local ternary patterns for facial expression recognition. EURASIP Journal on Image and Video Processing, 2017, 42. https://doi.org/10.1186/s13640-017-0190-5 DOI: https://doi.org/10.1186/s13640-017-0190-5
Huang, Q. (2021). An image sharpness enhancement algorithm based on green function. Traitement Du Signal, 38(2), 513-519. https://doi.org/10.18280/ts.380231 DOI: https://doi.org/10.18280/ts.380231
Joseph, J., Anoop, B. N., & Williams, J. (2019). A modified unsharp masking with adaptive threshold and objectively defined amount based on saturation constraints. Multimedia Tools and Applications, 78, 11073-11089. https://doi.org/10.1007/s11042-018-6682-1 DOI: https://doi.org/10.1007/s11042-018-6682-1
Kheradmand, A., & Milanfar, P. (2015). Non-linear structure-aware image sharpening with difference of smoothing operators. Frontiers in ICT, 2, 22. https://doi.org/10.3389/fict.2015.00022 DOI: https://doi.org/10.3389/fict.2015.00022
Kim, S., & Allebach, J. P. (2005). Optimal unsharp mask for image sharpening and noise removal. Journal of Electronic Imaging, 14(2), 023005. https://doi.org/10.1117/1.1924510 DOI: https://doi.org/10.1117/1.1924510
Li, L., Wu, D., Wu, J., Li, H., Lin, W., & Kot, A. C. (2016). Image sharpness assessment by sparse representation. IEEE Transactions on Multimedia, 18(6), 1085-1097. https://doi.org/10.1109/TMM.2016.2545398 DOI: https://doi.org/10.1109/TMM.2016.2545398
Li, P., Wang, H., Yu, M., & Li, Y. (2021). Overview of image smoothing algorithms. 2nd International Conference on Computer Information and Big Data (012024). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1883/1/012024 DOI: https://doi.org/10.1088/1742-6596/1883/1/012024
Ngo, D., Lee, S., & Kang, B. (2020). Nonlinear unsharp masking algorithm. 2020 International Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-6). IEEE. https://doi.org/10.1109/ICEIC49074.2020.9051376 DOI: https://doi.org/10.1109/ICEIC49074.2020.9051376
Osher, S., & Rudin, L. I. (1990). Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27(4), 919-940. https://doi.org/10.1137/0727053 DOI: https://doi.org/10.1137/0727053
Jeevakala, S., & Therese, A. B. (2018). Sharpening enhancement technique for MR images to enhance the segmentation. Biomedical Signal Processing and Control, 41, 21-30. https://doi.org/10.1016/j.bspc.2017.11.007 DOI: https://doi.org/10.1016/j.bspc.2017.11.007
Sadah, Y. A., Al-Najdawi, N., & Tedmori, S. (2013). Exploiting hybrid methods for enhancing digital X-ray images. International Arab Journal of Information Technology, 10(1), 28-35.
Sheppard, A. P., Sok, R. M., & Averdunk, H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical Mechanics and Its Applications, 339(1-2), 145-151. https://doi.org/10.1016/j.physa.2004.03.057 DOI: https://doi.org/10.1016/j.physa.2004.03.057
Shi, Z., Chen, Y., Gavves, E., Mettes, P., & Snoek, C. G. M. (2021). Unsharp mask guided filtering. IEEE Transactions on Image Processing, 30, 7472-7485. https://doi.org/10.1109/TIP.2021.3106812 DOI: https://doi.org/10.1109/TIP.2021.3106812
Simi, V. R., Edla, D. R., & Joseph, J. (2023). An inverse mathematical technique for improving the sharpness of magnetic resonance images. Journal of Ambient Intelligence and Humanized Computing, 14, 2061-2075. https://doi.org/10.1007/s12652-021-03416-1 DOI: https://doi.org/10.1007/s12652-021-03416-1
Singh, U., & Choubey, M. K. (2021). A review: image enhancement on MRI images. 2021 5th International Conference on Information Systems and Computer Networks (ISCON) (pp. 1-6). IEEE. https://doi.org/10.1109/ISCON52037.2021.9702464 DOI: https://doi.org/10.1109/ISCON52037.2021.9702464
Venkatanath, N., Praneeth, D., Maruthi Chandrasekhar, Bh., Channappayya, S. S., & Medasani, S. S. (2015). Blind image quality evaluation using perception based features. 2015 Twenty First National Conference on Communications (NCC) (pp. 1-6). IEEE. https://doi.org/10.1109/NCC.2015.7084843 DOI: https://doi.org/10.1109/NCC.2015.7084843
Vin Toh, K. K., & Mat Isa, N. A. (2011). Locally adaptive bilateral clustering for image deblurring and sharpness enhancement. IEEE Transactions on Consumer Electronics, 57(3), 1227-1235. https://doi.org/10.1109/TCE.2011.6018878 DOI: https://doi.org/10.1109/TCE.2011.6018878
Vu, P. V., & Chandler, D. M. (2012). A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Processing Letters, 19(7), 423-426. https://doi.org/10.1109/lsp.2012.2199980 DOI: https://doi.org/10.1109/LSP.2012.2199980
Yang, C.-C. (2014). Finest image sharpening by use of the modified mask filter dealing with highest spatial frequencies. Optik - International Journal for Light and Electron Optics, 125(8), 1942-1944. https://doi.org/10.1016/j.ijleo.2013.09.070 DOI: https://doi.org/10.1016/j.ijleo.2013.09.070
Zafeiridis, P., Papamarkos, N., Goumas, S., & Seimenis, I. (2016). A new sharpening technique for medical images using wavelets and image fusion. Journal of Engineering Science and Technology Review, 9(3), 187-200. https://doi.org/10.25103/jestr.093.27 DOI: https://doi.org/10.25103/jestr.093.27
Zhang, R., & Wu, J. (2023). A bidirectional guided filter used for RGB-D maps. IEEE Transactions on Instrumentation and Measurement, 72, 5009714. https://doi.org/10.1109/TIM.2023.3256467 DOI: https://doi.org/10.1109/TIM.2023.3256467
Article Details
Abstract views: 382
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
