Al-Ameen, Z., Al-Healy, M. A., & Hazim, R. A. (2020). Anisotropic diffusion-based unsharp masking for sharpness improvement in digital images. Journal of Soft Computing and Decision Support Systems, 7(1), 7-12.
Al-Ameen, Z., Muttar, A., & Al-Badrani, G. (2019). Improving the sharpness of digital image using an amended unsharp mask filter. International Journal of Image, Graphics and Signal Processing, 11(3), 1-9. https://doi.org/10.5815/ijigsp.2019.03.01
DOI: https://doi.org/10.5815/ijigsp.2019.03.01
Bogdan, V., Bonchiş, C., & Orhei, C. (2024). An image sharpening technique based on dilated filters and 2D-DWT image fusion. 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP) (pp. 591-598). SciTePress. https://doi.org/10.5220/0012416600003660
DOI: https://doi.org/10.5220/0012416600003660
Calder, J., Mansouri, A., & Yezzi, A. (2010). Image sharpening via Sobolev gradient flows. SIAM Journal on Imaging Sciences, 3(4), 981-1014. https://doi.org/10.1137/090771260
DOI: https://doi.org/10.1137/090771260
Cao, G., Zhao, Y., Ni, R., & Kot, A. C. (2011). Unsharp masking sharpening detection via overshoot artifacts analysis. IEEE Signal Processing Letters, 18(10), 603-606. https://doi.org/10.1109/LSP.2011.2164791
DOI: https://doi.org/10.1109/LSP.2011.2164791
Chen, T. J. (2019). An adaptive image sharpening scheme. Multi Conference on Computer Science and Information Systems, MCCSIS 2019 - Proceedings of the International Conferences on Interfaces and Human Computer Interaction 2019, Game and Entertainment Technologies 2019 and Computer Graphics, Visualization, Comp (pp. 396-400). International Association for development of the information society. https://doi.org/10.33965/g2019_201906c056
DOI: https://doi.org/10.33965/g2019_201906C056
Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007). The blur effect: perception and estimation with a new no-reference perceptual blur metric. Human Vision and Electronic Imaging, 6492. https://doi.org/10.1117/12.702790
DOI: https://doi.org/10.1117/12.702790
Demir, Y., & Kaplan, N. H. (2023). Low-light image enhancement based on sharpening-smoothing image filter. Digital Signal Processing, 138, 104054. https://doi.org/10.1016/j.dsp.2023.104054
DOI: https://doi.org/10.1016/j.dsp.2023.104054
Deng, G. (2010). A generalized unsharp masking algorithm. IEEE Transactions on Image Processing, 20(5), 1249-1261. https://doi.org/10.1109/TIP.2010.2092441
DOI: https://doi.org/10.1109/TIP.2010.2092441
Deng, G., Galetto, F., Alnasrawi, M., & Waheed, W. (2021). A guided edge-aware smoothing-sharpening filter based on patch interpolation model and generalized gamma distribution. IEEE Open Journal of Signal Processing, 2, 119-135. https://doi.org/10.1109/OJSP.2021.3063076
DOI: https://doi.org/10.1109/OJSP.2021.3063076
Edla, D. R., Simi, V. R., & Joseph, J. (2022). A noise-robust and overshoot-free alternative to unsharp masking for enhancing the acuity of MR images. Journal of Digital Imaging, 35, 1041-1060. https://doi.org/10.1007/s10278-022-00585-z
DOI: https://doi.org/10.1007/s10278-022-00585-z
Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing, 3rd Edition. Pearson Prentice Hall.
Gui, Z., & Liu, Y. (2011). An image sharpening algorithm based on fuzzy logic. Optik, 122(8), 697-702. https://doi.org/10.1016/j.ijleo.2010.05.010
DOI: https://doi.org/10.1016/j.ijleo.2010.05.010
Habee, N. J. (2021). Performance enhancement of medical image fusion based on DWT and sharpening Wiener filter. Jordanian Journal of Computers and Information Technology, 7(2), 118-129. https://doi.org/10.5455/jjcit.71-1610049522
DOI: https://doi.org/10.5455/jjcit.71-1610049522
He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397-1409. https://doi.org/10.1109/TPAMI.2012.213
DOI: https://doi.org/10.1109/TPAMI.2012.213
Holder, R. P., & Tapamo, J. R. (2017). Improved gradient local ternary patterns for facial expression recognition. EURASIP Journal on Image and Video Processing, 2017, 42. https://doi.org/10.1186/s13640-017-0190-5
DOI: https://doi.org/10.1186/s13640-017-0190-5
Huang, Q. (2021). An image sharpness enhancement algorithm based on green function. Traitement Du Signal, 38(2), 513-519. https://doi.org/10.18280/ts.380231
DOI: https://doi.org/10.18280/ts.380231
Joseph, J., Anoop, B. N., & Williams, J. (2019). A modified unsharp masking with adaptive threshold and objectively defined amount based on saturation constraints. Multimedia Tools and Applications, 78, 11073-11089. https://doi.org/10.1007/s11042-018-6682-1
DOI: https://doi.org/10.1007/s11042-018-6682-1
Kheradmand, A., & Milanfar, P. (2015). Non-linear structure-aware image sharpening with difference of smoothing operators. Frontiers in ICT, 2, 22. https://doi.org/10.3389/fict.2015.00022
DOI: https://doi.org/10.3389/fict.2015.00022
Kim, S., & Allebach, J. P. (2005). Optimal unsharp mask for image sharpening and noise removal. Journal of Electronic Imaging, 14(2), 023005. https://doi.org/10.1117/1.1924510
DOI: https://doi.org/10.1117/1.1924510
Li, L., Wu, D., Wu, J., Li, H., Lin, W., & Kot, A. C. (2016). Image sharpness assessment by sparse representation. IEEE Transactions on Multimedia, 18(6), 1085-1097. https://doi.org/10.1109/TMM.2016.2545398
DOI: https://doi.org/10.1109/TMM.2016.2545398
Li, P., Wang, H., Yu, M., & Li, Y. (2021). Overview of image smoothing algorithms. 2nd International Conference on Computer Information and Big Data (012024). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1883/1/012024
DOI: https://doi.org/10.1088/1742-6596/1883/1/012024
Ngo, D., Lee, S., & Kang, B. (2020). Nonlinear unsharp masking algorithm. 2020 International Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-6). IEEE. https://doi.org/10.1109/ICEIC49074.2020.9051376
DOI: https://doi.org/10.1109/ICEIC49074.2020.9051376
Osher, S., & Rudin, L. I. (1990). Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27(4), 919-940. https://doi.org/10.1137/0727053
DOI: https://doi.org/10.1137/0727053
Jeevakala, S., & Therese, A. B. (2018). Sharpening enhancement technique for MR images to enhance the segmentation. Biomedical Signal Processing and Control, 41, 21-30. https://doi.org/10.1016/j.bspc.2017.11.007
DOI: https://doi.org/10.1016/j.bspc.2017.11.007
Sadah, Y. A., Al-Najdawi, N., & Tedmori, S. (2013). Exploiting hybrid methods for enhancing digital X-ray images. International Arab Journal of Information Technology, 10(1), 28-35.
Sheppard, A. P., Sok, R. M., & Averdunk, H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical Mechanics and Its Applications, 339(1-2), 145-151. https://doi.org/10.1016/j.physa.2004.03.057
DOI: https://doi.org/10.1016/j.physa.2004.03.057
Shi, Z., Chen, Y., Gavves, E., Mettes, P., & Snoek, C. G. M. (2021). Unsharp mask guided filtering. IEEE Transactions on Image Processing, 30, 7472-7485. https://doi.org/10.1109/TIP.2021.3106812
DOI: https://doi.org/10.1109/TIP.2021.3106812
Simi, V. R., Edla, D. R., & Joseph, J. (2023). An inverse mathematical technique for improving the sharpness of magnetic resonance images. Journal of Ambient Intelligence and Humanized Computing, 14, 2061-2075. https://doi.org/10.1007/s12652-021-03416-1
DOI: https://doi.org/10.1007/s12652-021-03416-1
Singh, U., & Choubey, M. K. (2021). A review: image enhancement on MRI images. 2021 5th International Conference on Information Systems and Computer Networks (ISCON) (pp. 1-6). IEEE. https://doi.org/10.1109/ISCON52037.2021.9702464
DOI: https://doi.org/10.1109/ISCON52037.2021.9702464
Venkatanath, N., Praneeth, D., Maruthi Chandrasekhar, Bh., Channappayya, S. S., & Medasani, S. S. (2015). Blind image quality evaluation using perception based features. 2015 Twenty First National Conference on Communications (NCC) (pp. 1-6). IEEE. https://doi.org/10.1109/NCC.2015.7084843
DOI: https://doi.org/10.1109/NCC.2015.7084843
Vin Toh, K. K., & Mat Isa, N. A. (2011). Locally adaptive bilateral clustering for image deblurring and sharpness enhancement. IEEE Transactions on Consumer Electronics, 57(3), 1227-1235. https://doi.org/10.1109/TCE.2011.6018878
DOI: https://doi.org/10.1109/TCE.2011.6018878
Vu, P. V., & Chandler, D. M. (2012). A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Processing Letters, 19(7), 423-426. https://doi.org/10.1109/lsp.2012.2199980
DOI: https://doi.org/10.1109/LSP.2012.2199980
Yang, C.-C. (2014). Finest image sharpening by use of the modified mask filter dealing with highest spatial frequencies. Optik - International Journal for Light and Electron Optics, 125(8), 1942-1944. https://doi.org/10.1016/j.ijleo.2013.09.070
DOI: https://doi.org/10.1016/j.ijleo.2013.09.070
Zafeiridis, P., Papamarkos, N., Goumas, S., & Seimenis, I. (2016). A new sharpening technique for medical images using wavelets and image fusion. Journal of Engineering Science and Technology Review, 9(3), 187-200. https://doi.org/10.25103/jestr.093.27
DOI: https://doi.org/10.25103/jestr.093.27
Zhang, R., & Wu, J. (2023). A bidirectional guided filter used for RGB-D maps. IEEE Transactions on Instrumentation and Measurement, 72, 5009714. https://doi.org/10.1109/TIM.2023.3256467
DOI: https://doi.org/10.1109/TIM.2023.3256467