Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150. https://doi.org/10.1002/ett.4150
Edeh, D. I. (2021). Network intrusion detection system using deep learning technique. Master of Science, Department of Computing, University of Turku.
Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit card fraud detection using convolutional neural networks. In A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, & D. Liu (Eds.), Neural Information Processing (Vol. 9949, pp. 483–490). Springer International Publishing. https://doi.org/10.1007/978-3-319-46675-0_53
Ghani, H., Virdee, B., & Salekzamankhani, S. (2023). A deep learning approach for network intrusion detection using a small features vector. Journal of Cybersecurity and Privacy, 3(3), 451-463. https://doi.org/10.3390/jcp3030023
Kim, J., Kim, J., Thi Thu, H. L., & Kim, H. (2016). Long short term memory recurrent neural network cassifier for intrusion detection. 2016 International Conference on Platform Technology and Service (PlatCon) (pp. 1–5). https://doi.org/10.1109/PlatCon.2016.7456805
Kültür, E. (2022). Network intrusion detection with a deep learning approach. Master's thesis, Middle East Technical University (Turkey).
Nasr, M., Bahramali, A., & Houmansadr, A. (2018). DeepCorr: Strong flow correlation attacks on tor using deep learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 1962–1976). https://doi.org/10.1145/3243734.3243824
Sama, L. (2022). Network intrusion detection using deep learning. Doctoral dissertation, Victoria University.
Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani, A. A. (2019). Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. 2019 international carnahan conference on security technology (ICCST) (pp. 1-8). IEEE. https://doi.org/10.1109/CCST.2019.8888419
Shiri, F. M., Perumal, T., Mustapha, N., & Mohamed, R. (2024). A comprehensive overview and comparative analysis on deep learning models. Journal on Artificial Intelligence, 6, 301-360. https://doi.org/10.32604/jai.2024.054314
Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning approach to network intrusion detection. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(1), 41–50. https://doi.org/10.1109/TETCI.2017.2772792
Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning approach for network intrusion detection in software defined networking. 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), 258–263. https://doi.org/10.1109/WINCOM.2016.7777224
Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961. https://doi.org/10.1109/ACCESS.2017.2762418
Zhang, Y., Chen, X., Jin, L., Wang, X., & Guo, D. (2019). Network intrusion detection: Based on deep hierarchical network and original flow data. IEEE Access, 7, 37004–37016. https://doi.org/10.1109/ACCESS.2019.2905041
Zhang, Z., Zhou, X., Zhang, X., Wang, L., & Wang, P. (2018). A model based on convolutional neural network for online transaction fraud detection. Security and Communication Networks, 2018, 1–9. https://doi.org/10.1155/2018/5680264