Akyon, F. C., Altinuc, S. O., & Temizel, A. (2022). Slicing aided hyper inference and fine-tuning for small object detection. International Conference on Image Processing (ICIP) (pp. 966–970). IEEE. https://doi.org/10.1109/ICIP46576.2022.9897990
Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., Omata, H., Kashiyama, T., & Sekimoto, Y. (2022). Crowdsensing-based road damage detection challenge (CRDDC’2022). 2022 IEEE International Conference on Big Data (Big Data) (pp. 6378–6386). IEEE. https://doi.org/10.1109/BIGDATA55660.2022.10021040
Arya, D., Maeda, H., Kumar Ghosh, S., Toshniwal, D., Omata, H., Kashiyama, T., & Sekimoto, Y. (2020). Global road damage detection: State-of-the-art solutions. 2020 IEEE International Conference on Big Data (Big Data) (pp. 5533–5539). IEEE. https://doi.org/10.1109/BIGDATA50022.2020.9377790
Bai, R., Shen, F., Wang, M., Lu, J., & Zhang, Z. (2023). Improving detection capabilities of YOLOv8-n for small objects in remote sensing imagery: Towards better precision with simplified model complexity. https://doi.org/10.21203/RS.3.RS-3085871/V1
Bhattacharya, S., Jha, H., & Nanda, R. P. (2022). Application of IoT and artificial intelligence in road safety. 2022 International Conference on Interdisciplinary Research in Technology and Management (IRTM) (pp. 1-6). IEEE. https://doi.org/10.1109/IRTM54583.2022.9791529
cvat-ai / cvat. (2025, March 21). Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. GitHub. Retrieved September 24, 2024 from https://github.com/cvat-ai/cvat
Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., & Li, B. (2020). Axiom-based Grad-CAM: Towards accurate visualization and explanation of CNNs. ArXiv, abs/2008.02312v4. https://arxiv.org/abs/2008.02312v4
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). GhostNet: More features from cheap operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1577–1586). IEEE. https://doi.org/10.1109/CVPR42600.2020.00165
Jakobsen, M. D., Glies Vincents Seeberg, K., Møller, M., Kines, P., Jørgensen, P., Malchow-Møller, L., Andersen, A. B., & Andersen, L. L. (2023). Influence of occupational risk factors for road traffic crashes among professional drivers: Systematic review. Transport Reviews, 43(3), 533–563. https://doi.org/10.1080/01441647.2022.2132314
Jiang, Y. (2024). Road damage detection and classification using deep neural networks. Discover Applied Sciences, 6, 421. https://doi.org/10.1007/s42452-024-06129-0
Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang, T., & Chen, Q. (2021). Involution: Inverting the inherence of convolution for visual recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 12316–12325). IEEE. https://doi.org/10.1109/CVPR46437.2021.01214
Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., & Ren, Q. (2024). Slim-neck by GSConv: a lightweight-design for real-time detector architectures. Journal of Real-Time Image Processing, 21, 62. https://doi.org/10.1007/S11554-024-01436-6
Li, Y., Hou, Q., Zheng, Z., Cheng, M. M., Yang, J., & Li, X. (2023). Large selective kernel network for remote sensing object detection. IEEE International Conference on Computer Vision (pp. 16748–16759). IEEE. https://doi.org/10.1109/ICCV51070.2023.01540
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (Vol. 11215, pp. 89–105). Springer International Publishing. https://doi.org/10.1007/978-3-030-01252-6_6
Liu, J., Zhang, S., Ma, Z., Zeng, Y., & Liu, X. (2023). A workpiece-dense scene object detection method based on improved YOLOv5. Electronics, 12(13), 2966. https://doi.org/10.3390/ELECTRONICS12132966
Liu, Q., Huang, W., Duan, X., Wei, J., Hu, T., Yu, J., Huang, J., Liu, Q., Huang, W., Duan, X., Wei, J., Hu, T., Yu, J., & Huang, J. (2023). DSW-YOLOv8n: A new underwater target detection algorithm based on improved YOLOv8n. Electronics, 12(18), 3892. https://doi.org/10.3390/ELECTRONICS12183892
Liu, S., Huang, D., & Wang, Y. (2019). Learning spatial fusion for single-shot object detection. ArXiv, abs/1911.09516v2. https://arxiv.org/abs/1911.09516v2
Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., & Huang, Z. (2023). Efficient multi-scale attention module with cross-spatial learning. IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings (ICASSP) (pp. 1-5). IEEE. https://doi.org/10.1109/ICASSP49357.2023.10096516
Ranyal, E., Sadhu, A., & Jain, K. (2022). Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22(8), 3044. https://doi.org/10.3390/S22083044
Tang, Z., Chamchong, R., & Pawara, P. (2023). A comparison of road damage detection based on YOLOv8. International Conference on Machine Learning and Cybernetics (pp. 223–228). IEEE. https://doi.org/10.1109/ICMLC58545.2023.10327993
Tomiło, P. (2024, October 1). CoCG Road Condition - Detection Dataset (CoCGRCDD). Mendeley Data. https://doi.org/10.17632/SNYYFKNW56.1
Tomiło, P., Oleszczuk, P., Laskowska, A., Wilczewska, W., & Gnapowski, E. (2024). Effect of architecture and inferencep of artificial neural network models in the detection task on energy demand. Energies, 17(21), 5417. https://doi.org/10.3390/EN17215417
Wang, J., Meng, R., Huang, Y., Zhou, L., Huo, L., Qiao, Z., & Niu, C. (2024). Road defect detection based on improved YOLOv8s model. Scientific Reports, 14, 16758. https://doi.org/10.1038/s41598-024-67953-3
Wang, X., Gao, H., Jia, Z., & Li, Z. (2023). BL-YOLOv8: An improved road defect detection model based on YOLOv8. Sensors, 23(20), 8361. https://doi.org/10.3390/S23208361
Xing, Y., Han, X., Pan, X., An, D., Liu, W., & Bai, Y. (2024). EMG-YOLO: road crack detection algorithm for edge computing devices. Frontiers in Neurorobotics, 18, 1423738. https://doi.org/10.3389/FNBOT.2024.1423738
Xu, H. (2022). FCD-YOLO: Improved YOLOv5 based on decoupled head and attention mechanism for defect detection on printed circuit board. 2022 2nd International Conference on Networking Systems of AI (INSAI) (pp. 7–11). IEEE. https://doi.org/10.1109/INSAI56792.2022.00011
Yang, G., Lei, J., Zhu, Z., Cheng, S., Feng, Z., & Liang, R. (2023). AFPN: Asymptotic feature pyramid network for object detection. IEEE International Conference on Systems, Man and Cybernetics (pp. 2184–2189). IEEE. https://doi.org/10.1109/SMC53992.2023.10394415
Zhou, Y., & Yang, K. (2022). Exploring TensorRT to improve real-time inference for deep learning. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 2011–2018). IEEE. https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable DETR: Deformable transformers for end-to-end object detection. ArXiv, abs/2010.04159v4. https://arxiv.org/abs/2010.04159v4