A systematic literature review of diabetes prediction using metaheuristic algorithm-based feature selection: Algorithms and challenges method
Article Sidebar
Open full text
Main Article Content
DOI
Authors
sirmayanti.sirmayanti@poliupg.ac.id
Abstract
Diabetes is a disruption in metabolism that leads to elevated levels of glucose in the bloodstream and causes many other problems, such as stroke, kidney failure, heart, and nerve issues that are of serious concern globally. Because many researchers have attempted to build accurate Diabetes prediction models, this field has seen significant advancements. Nevertheless, performance issues are still a substantial challenge in model building. Machine Learning techniques have shown strong performance in prediction and classification tasks. Unfortunately, they often encounter challenges due to noisy features and high feature space dimensionality, significantly affecting Diabetes prediction performance. To address the problems, we can employ metaheuristic algorithm-based feature selection. However, there has been limited research on metaheuristic algorithm-based feature selections for Diabetes prediction. Therefore, this paper presents a systematic literature review of Diabetes prediction using metaheuristic algorithm-based feature selections. The data used in this study is the last ten years of published articles from 2014 to 2024. For this extensive investigation, 50 scholarly papers were gathered and analyzed to extract meaningful information about metaheuristic algorithm-based feature selections. This paper reviews metaheuristic algorithm-based feature selection, focusing on the algorithms used and the challenges faced in diabetes prediction.
Keywords:
References
Abdel-Fattah Sayed, S., Nabil, E., & Badr, A. (2016). A binary clonal flower pollination algorithm for feature selection. Pattern Recognition Letters, 77, 21–27. https://doi.org/10.1016/j.patrec.2016.03.014
Abdollahi, J., & Aref, S. (2024). Early prediction of diabetes using feature selection and machine learning algorithms. SN Computer Science, 5(2), 217. https://doi.org/10.1007/s42979-023-02545-y
Abdollahi, J., & Nourimoghaddam, B. (2023). Diabetes data classiication using deep learning approach and feature selection based on genetic. https://doi.org/10.21203/rs.3.rs-2855804/v1
Abdullah, A. S., Özok, Y. E., & Rahebi, J. (2018). A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Medical and Biological Engineering and Computing, 56(11), 2015–2024. https://doi.org/10.1007/s11517-018-1840-1
Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). IEEE Access, 9, 26766–26791. https://doi.org/10.1109/ACCESS.2021.3056407
Agrawal, S., Patle, B. K., & Sanap, S. (2024). A systematic review on metaheuristic approaches for autonomous path planning of unmanned aerial vehicles. Drone Systems and Applications, 12, 1–28. https://doi.org/10.1139/dsa-2023-0093
Akinola, O. O., Ezugwu, A. E., Agushaka, J. O., Zitar, R. A., & Abualigah, L. (2022). Multiclass feature selection with metaheuristic optimization algorithms: A review. Neural Computing and Applications, 34(22), 19751–19790. https://doi.org/10.1007/s00521-022-07705-4
Alatas, B., & Can, U. (2015). Physics based metaheuristic optimization algorithms for global optimization physics based metaheuristic algorithms for global optimization. American Journal of Information Science and Computer Engineering, 1(3), 94-106.
Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter search for machine learning algorithms for optimizing the computational complexity. Processes, 11(2). https://doi.org/10.3390/pr11020349
Alirezaei, M., Niaki, S. T. A., & Niaki, S. A. A. (2019). A bi-objective hybrid optimization algorithm to reduce noise and data dimension in diabetes diagnosis using support vector machines. Expert Systems with Applications, 127, 47–57. https://doi.org/10.1016/j.eswa.2019.02.037
Aliyu, H. A., Muritala, I. O., Bello-Salau, H., Mohammed, S., Onumanyi, A. J., & Ajayi, O.-O. (2024). Optimizing machine learning algorithms for diabetes data: A metaheuristic approach to balancing and tuning classifiers parameters. Franklin Open, 8, 100153. https://doi.org/10.1016/j.fraope.2024.100153
Al-Tawil, M., Mahafzah, B. A., Al Tawil, A., & Aljarah, I. (2023). Bio-inspired machine learning approach to type 2 diabetes detection. Symmetry, 15(3), 764. https://doi.org/10.3390/sym15030764
Asia Pacific Tele-Opthamology Society. (2019, September 08). APTOS 2019 blindness detection. Kaggle. https://www.kaggle.com/competitions/aptos2019-blindness-detection/data
Aslam, N., Khan, I. U., Alkhalifah, S., Al-Sadiq, S. A., Bughararah, S. W., Al-Otabi, M. A., & Al-Odinie, Z. M. (2021). Predicting diabetic patient hospital readmission using optimized random forest and firefly evolutionary algorithm. International Journal on Advanced Science, Engineering and Information Technology, 11(5), 1876–1883. https://doi.org/10.18517/ijaseit.11.5.14221
Astuti, L. W., Saluza, I., Yulianti, E., & Dhamayanti, D. (2022). Feature selection menggunakan binary wheal optimizaton algorithm (BWOA) pada klasifikasi penyakit diabetes. Jurnal Ilmiah Informatika Global, 13(1). https://doi.org/10.36982/jiig.v13i1.2057
Balakrishnan, U., Venkatachalapathy, K., & Marimuthu, G. S. (2016). An enhanced PSO-DEFS based feature selection with biometric authentication for identification of diabetic retinopathy. Journal of Innovative Optical Health Sciences, 9(6), 1650020. https://doi.org/10.1142/S1793545816500206
Bekaddour, F., Rahmoune, M. B., Salim, C., & Hafaifa, A. (2017). Performance study of different metaheuristics for diabetes diagnosis.. In I. Rojas, G. Joya, & A. Catala (Eds.), Advances in Computational Intelligence (Vol. 10305, pp. 591–602). Springer International Publishing. https://doi.org/10.1007/978-3-319-59153-7_51
Bhimavarapu, U., & Battineni, G. (2022). Automatic microaneurysms detection for early diagnosis of diabetic retinopathy using improved discrete particle swarm optimization. Journal of Personalized Medicine, 12(2), 317. https://doi.org/10.3390/jpm12020317
Bielza, C., & Larrañaga, P. (2020). Data-driven computational neuroscience. Cambridge University Press.
Bilal, A., Sun, G., Mazhar, S., & Imran, A. (2022). Improved grey wolf optimization-based feature selection and classification using CNN for diabetic retinopathy detection. In V. Suma, X. Fernando, K.-L. Du, & H. Wang (Eds.), Evolutionary Computing and Mobile Sustainable Networks (Vol. 116, pp. 1–14). Springer Singapore. https://doi.org/10.1007/978-981-16-9605-3_1
Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151. https://doi.org/10.1016/j.asoc.2011.02.032
Blum, C., Puchinger, J., Raidl, G., & Roli, A. (2010). A brief survey on hybrid metaheuristics. 4th International Conference on Bioinspired Optimization (pp. 3-16).
Carmona, E. J., Rincón, M., García-Feijoó, J., & Martínez-de-la-Casa, J. M. (2008). Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43(3), 243-259. https://doi.org/10.1016/j.artmed.2008.04.005
Chaudhuri, A., & Sahu, T. P. (2021). Feature selection using Binary Crow Search Algorithm with time varying flight length. Expert Systems with Applications, 168, 114288. https://doi.org/10.1016/j.eswa.2020.114288
Chellappan, D., & Rajaguru, H. (2023a). Detection of diabetes through microarray genes with enhancement of classifiers performance. Diagnostics, 13(16), 2654. https://doi.org/10.3390/diagnostics13162654
Chellappan, D., & Rajaguru, H. (2023b). Enhancement of classifier performance using swarm intelligence in detection of diabetes from pancreatic microarray gene. Biomimetics, 8, 503 https://doi.org/10.20944/preprints202308.1033.v1
Chowdhury, A. A., Das, A., Hoque, K. K. S., & Karmaker, D. (2022). A comparative study of hyperparameter optimization techniques for deep learning. In M. S. Uddin, P. K. Jamwal, & J. C. Bansal (Eds.), Proceedings of International Joint Conference on Advances in Computational Intelligence (pp. 509–521). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0332-8_38
Clore, J., Cios, K., DeShazo, J., & Strack, B. (2014, February 5). Diabetes 130-US Hospitals for Years 1999-2008 [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5230J
Decencière, E., Zhang, X., Cazuguel, G., Laÿ, B., Cochener, B., Trone, C., Gain, P., Ordóñez-Varela, J. R., Massin, P., Erginay, A., Charton, B., & Klein, J. C. (2014). Feedback on a publicly distributed image database: The messidor database. Image Analysis and Stereology, 33(3), 231–234. https://doi.org/10.5566/ias.1155
Dehkordi, S. T., Khatibi Bardsiri, A., & Zahedi, M. H. (2019). Prediction and diagnosis of diabetes mellitus using a water wave optimization algorithm. Journal of AI and Data Mining, 7(4), 617–630. https://doi.org/10.22044/JADM.2018.6446.1758
Donahue, K., Chouldechova, A., & Kenthapadi, K. (2022). Human-algorithm collaboration: Achieving complementarity and avoiding unfairness. ACM International Conference Proceeding Series (pp. 1639–1656). Association for Computing Machinery. https://doi.org/10.1145/3531146.3533221
Faraji-Biregani, M. & Nematbakhsh, N. (2019). Diabetes prediction recommender system based on artificial neural networks and sine-cosine optimization algorithm. Conference on Knowledge-Based Engineering and Innovation, Iran University of Science and Technology (pp. 263-268). IEEE.
Gadekallu, T. R., & Khare, N. (2017a). Cuckoo search optimized reduction and fuzzy logic classifier for heart disease and diabetes prediction. International Journal of Fuzzy System Applications, 6(2), 25–42. https://doi.org/10.4018/IJFSA.2017040102
García-Domínguez, A., Galván-Tejada, C. E., Magallanes-Quintanar, R., Gamboa-Rosales, H., Curiel, I. G., Peralta-Romero, J., & Cruz, M. (2023). Diabetes detection models in mexican patients by combining machine learning algorithms and feature selection techniques for clinical and paraclinical attributes: A comparative evaluation. Journal of Diabetes Research, 2023. https://doi.org/10.1155/2023/9713905
Gupta, A., Rajput, I. S., Gunjan, Jain, V., & Chaurasia, S. (2022). NSGA-II-XGB: Meta-heuristic feature selection with XGBoost framework for diabetes prediction. Concurrency and Computation: Practice and Experience, 34(21), e7123. https://doi.org/10.1002/cpe.7123
Haghighi, M. S., & Hoseini, M. J. M. (2020). Improving machine learning accuracy in diagnosing diseases using feature selection based on the fruit-fly algorithm. 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-6). IEEE.. https://doi.org/10.1109/ICSPIS51611.2020.9349593
Hartono, N. (2022). Multi-objective bees algorithm for feature selection. 1st International Conference on Emerging Issues in Technology, Engineering and Science (ICE-TES) (pp. 358–369). ScitePress. https://doi.org/10.5220/0010754200003113
Hoda, Z., Nadimi-Shahraki, M. H. (2016). Feature selection based on whale optimization algorithm for diseases diagnosis. International Journal of Computer Science and Information Security, 14(9), 1243-1247, .http://dx.doi.org/10.13140/RG.2.2.29065.88161
Hoover, A., & Goldbaum, M. (2003). Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical Imaging, 22(8), 951–958. https://doi.org/10.1109/TMI.2003.815900
Jadhav, A. S., Patil, P. B., & Biradar, S. (2021). Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evolutionary Intelligence, 14, 1431–1448. https://doi.org/10.1007/s12065-020-00400-0
Jain, A., & Singhal, A. (2023). Utilizing metaheuristic machine learning techniques for early diabetes detection. 2023 Second International Conference on Informatics (ICI) (pp. 1–6). IEEE. https://doi.org/10.1109/ICI60088.2023.10421100
Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: A review. Complex and Intelligent Systems, 8, 2663–2693. https://doi.org/10.1007/s40747-021-00637-x
Cukierski, W. (2014, July 8). Diabetic Retinophaty Detection. Kaggle. https://www.kaggle.com/c/diabetic-retinopathy-detection/data
Kamel, S. R., & Yaghoubzadeh, R. (2021). Feature selection using grasshopper optimization algorithm in diagnosis of diabetes disease. Informatics in Medicine Unlocked, 26, 100707. https://doi.org/10.1016/j.imu.2021.100707
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of articular cartilage damage based on generated acoustic sgnals using ANN—Part I: Femoral‐tibial joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part II: Patellofemoral Joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765
Karthikeyan, R., & Alli, P. (2018). Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy. Journal of Medical Systems, 42, 195. https://doi.org/10.1007/s10916-018-1055-x
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Pietilä, J., Kälviäinen, H., & Uusitalo, H. (2021, January 25). DIARETDB1 - Standard Diabetic Retinopathy Database. Standard Diabetic Retinopathy Database. https://www.kaggle.com/datasets/nguyenhung1903/diaretdb1-standard-diabetic-retinopathy-database
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., & Pietilä, J. (2007). DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. International Conference on Neural Networks (ICNN’95) (pp. 1942-1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968
Khurma, A. R., Aljarah, I., & Sharieh, A. (2020). Rank based moth flame optimisation for feature selection in the medical application. 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC48606.2020.9185498
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
Kulkarni, M. D., Deore, S. S., Chen, C.-L., Khalaf, O. I., Deng, Y.-Y., Uddin, M., & Hamad, A. A. (2024). Predicting microvascular complications in dabetic mellitus using improved enhanced coati optimizer. International Journal of Computing and Digital Systems, 16(1), 1485-1498. http://dx.doi.org/10.12785/ijcds/1601110
Larxel. (2020). DRIVE Digital retinal images for vessel extraction. Kaggle. https://www.kaggle.com/datasets/andrewmvd/drive-digital-retinal-images-for-vessel-extraction?resource=download
Le, T. M., Vo, T. M., Pham, T. N., & Dao, S. V. T. (2021). A novel wrapper-based feature selection for early diabetes prediction enhanced with a metaheuristic. IEEE Access, 9, 7869–7884. https://doi.org/10.1109/ACCESS.2020.3047942
Li, J., Guo, C., Wang, T., Xu, Y., Peng, F., Zhao, S., Li, H., Jin, D., Xia, Z., Che, M., Zuo, J., Zheng, C., Hu, H., & Mao, G. (2022). Interpretable machine learning-derived nomogram model for early detection of diabetic retinopathy in type 2 diabetes mellitus: A widely targeted metabolomics study. Nutrition and Diabetes, 12, 36. https://doi.org/10.1038/s41387-022-00216-0
Li, X., Curiger, M., Dornberger, R., & Hanne, T. (2023). Optimized computational diabetes prediction with feature selection algorithms. ACM International Conference Proceeding Series (pp. 36–43). Association for Computing Machinery. https://doi.org/10.1145/3596947.3596948
Liu, R., Rong, Y., & Peng, Z. (2020). A review of medical artificial intelligence. Global Health Journal, 4(2), 42–45). https://doi.org/10.1016/j.glohj.2020.04.002
Majhi, S. K. (2019). How effective is the moth-flame optimization in diabetes data classification. In J. Kalita, V. E. Balas, S. Borah, & R. Pradhan (Eds.), Recent Developments in Machine Learning and Data Analytics (Vol. 740, pp. 79–87). Springer Singapore. https://doi.org/10.1007/978-981-13-1280-9_7
Mallika, C., & Selvamuthukumaran, S. (2021). A hybrid crow search and grey wolf optimization technique for enhanced medical data classification in diabetes diagnosis system. International Journal of Computational Intelligence Systems, 14, 157. https://doi.org/10.1007/s44196-021-00013-0
Chui, M., Issler, M., Roberts, R., & Yee, L. (2023, July 20). McKinsey Technology Trends Outlook 2023. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-in-tech-2023
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Vaishali, R., Sasikala, R., Ramasubbareddy, S., Remya, S., & Nalluri, S. (2017). Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset. InternationalConference on Computing Networking and Informatics (ICCNI) (pp. 1–5). IEEE. http://dx.doi.org/10.1109/ICCNI.2017.8123815
Nagaraj, P., Deepalakshmi, P., Mansour, R. F., & Almazroa, A. (2021a). Artificial flora algorithm-based feature selection with gradient boosted tree model for diabetes classification. Diabetes, Metabolic Syndrome and Obesity, 14, 2789–2806. https://doi.org/10.2147/DMSO.S312787
Navazi, F., Yuan, Y., & Archer, N. (2023). An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Analytics, 4, 100227. https://doi.org/10.1016/j.health.2023.100227
Nivetha, N. R. P., Periasamy, P. S., & Anitha, P. (2024). Binary fire hawks optimizer with deep learning driven noninvasive diabetes detection and classification. Bratislava Medical Journal, 125(2), 117–124. https://doi.org/10.4149/BLL_2024_020
Patil, R., Tamane, S., & Patil, K. (2020). Self organising fuzzy logic classifier for predicting type-2 diabetes mellitus using ACO-ANN. International Journal of Advanced Computer Science and Applications, 11(7), 348–353. https://doi.org/10.14569/IJACSA.2020.0110746
Patil, R., Tamane, S., Rawandale, S. A., & Patil, K. (2022). A modified mayfly-SVM approach for early detection of type 2 diabetes mellitus. International Journal of Electrical and Computer Engineering, 12(1), 524–533. https://doi.org/10.11591/ijece.v12i1.pp524-533
Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Computer Science, 82, 115–121. https://doi.org/10.1016/j.procs.2016.04.016
Pradhan, G., Thapa, G., Pradhan, R., Khandelwal, B., Panigrahi, R., Bhoi, A. K., & Barsocchi, P. (2024). Optimized forest framework with a binary multineighborhood artificial bee colony for enhanced diabetes mellitus detection. International Journal of Computational Intelligence Systems, 17, 194. https://doi.org/10.1007/s44196-024-00598-2
Qaraad, M., Amjad, S., Manhrawy, I. I. M., Fathi, H., Hassan, B. A., & Kafrawy, P. El. (2021). A hybrid feature selection optimization model for high dimension data classification. IEEE Access, 9, 42884–42895. https://doi.org/10.1109/ACCESS.2021.3065341
Raj, A., Maizura, N., Noor, M., Mohemad, R., Azliza, N., Mat, C., & Hussain, S. (2024). An efficient feature selection and extraction using metaheuristic technique for diabetic retinopathy. Journal of Electrical Systems, 20(6s), 20–26. https://doi.org/10.52783/jes.2844
Rashid, A. (2020, July 18). Iraqi Society Diabetes (ISD). Mendeley Data. https://doi.org/10.17632/wj9rwkp9c2.1
Reddy, G. T., & Khare, N. (2017). Hybrid firefly-bat optimized fuzzy artificial neural network based classifier for diabetes diagnosis. International Journal of Intelligent Engineering and Systems, 10(4), 18–27. https://doi.org/10.22266/ijies2017.0831.03
Salman, I., Ucan, O. N., Bayat, O., & Shaker, K. (2018). Impact of metaheuristic iteration on artificial neural network structure in medical data. Processes, 6(5), 57. https://doi.org/10.3390/pr6050057
Sameen Hameed, S., Olayemi Petinrin, O., Osman Hashi, A., & Saeed, F. (2018). Filter-wrapper combination and embedded feature selection for gene expression data. International Journal of Advances in Soft Computing and its Applications, 10(1), 1-15.
Samreen, S. (2021). Memory-efficient, accurate and early diagnosis of diabetes through a machine learning pipeline employing crow search-based feature engineering and a stacking ensemble. IEEE Access, 9, 134335–134354. https://doi.org/10.1109/ACCESS.2021.3116383
Selvakumar, S., Abdullah, A. S., & Suganya, R. (2019). Decision support system for type II diabetes and its risk factor prediction using bee-based harmony search and decision tree algorithm decision support system for type II diabetes. International Journal of Biomedical Engineering and Technology, 29(1), 46-67. https://doi.org/10.1504/IJBET.2019.096880
Shankar, S., & Manikandan. (2019). Diagnosis of diabetes diseases using optimized fuzzy rule set by grey wolf optimization. Pattern Recognition Letters, 125, 432–438. https://doi.org/10.1016/j.patrec.2019.06.005
Shuja, M., Mittal, S., & Zaman, M. (2018). Decision support predictive model for prognosis of diabetes using SMOTE and decision tree impact of performance analysis of varied subjects on overall result: An empirical discourse of educational data mining view project. International Journal of Applied Engineering Research, 13(11), 9277-9282.
Soliman, O. S., & Elhamd, E. A. (2015). A chaotic levy flights bat algorithm for diagnosing diabetes mellitus. International Journal of Computer Applications, 111(1) 36-42.
Sravanthi, A. L., Al-Ashmawy, S., Kaur, C., Ansari, M. S. Al, Saravanan, K. A., & Vuyyuru, V. A. (2023). Utilizing multimodal medical data and a hybrid optimization model to improve diabetes prediction. International Journal of Advanced Computer Science and Applications, 14(11), 754–764. https://doi.org/10.14569/IJACSA.2023.0141176
Sreejith, S., Khanna Nehemiah, H., & Kannan, A. (2020). Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection. Computers in Biology and Medicine, 126, 103991. https://doi.org/10.1016/j.compbiomed.2020.103991
Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., & Van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4), 501–509. https://doi.org/10.1109/TMI.2004.825627
Sun, L., Qin, H., Przystupa, K., Cui, Y., Kochan, O., Skowron, M., & Su, J. (2022). A hybrid feature selection framework using improved sine cosine algorithm with metaheuristic techniques. Energies, 15(10), 3485. https://doi.org/10.3390/en15103485
Sutha, S., Gnanambigai, N., & Dinadayalan, P. (2023). Data-driven machine learning ensemble approach for diabetes risk prediction at early stages. Journal of Research Administration Society of Research Administrators International, 5(2), 6101-6115.
Tarik, M., Mniai, A., & Jebari, K. (2023). Hybrid feature selection and support vector machine framework for predicting maintenance failures. Applied Computer Science, 19(2), 112–124. https://doi.org/10.35784/acs-2023-18
Tomar, V., Bansal, M., & Singh, P. (2023). Metaheuristic algorithms for optimization: A brief review. Engineering Proceedings, 59(1), 238. https://doi.org/10.3390/engproc2023059238
UC Irvine Machine Learning Repository. (2016, October 06). Pima Indians Diabetes Database. Kaggle. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
UC Irvine Machine Learning Repository. (2020, November 7). Early Stage Diabetes Risk Prediction. Archive.Ics.Uci.Edu. https://doi.org/10.24432/C5VG8H
Ullah, N., Mohmand, M. I., Ullah, K., Gismalla, M. S. M., Ali, L., Khan, S. U., & Ullah, N. (2022). Diabetic retinopathy detection using genetic algorithm-based CNN features and error correction output code SVM framework classification model. Wireless Communications and Mobile Computing, 2022(1), 7095528. https://doi.org/10.1155/2022/7095528
Ur Rehman, A., & Khanum, A. (2014). Swarm optimized fuzzy reasoning model (SOFRM) for diabetes diagnosis. Life Science Journal 11(3), 42-49. http://www.dx.doi.org/10.7537/marslsj110314.07
Vijayalakshmi, P. S., & Kumar, M. J. (2022). Improved grey wolf optimization algorithm (iGWO) for the detection of diabetic retinopathy using convnets and region based segmentation techniques. International Journal of Health Sciences, 6(S1), 13100–13118. https://doi.org/10.53730/ijhs.v6nS1.8330
Welikala, R. A., Fraz, M. M., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., & Barman, S. A. (2015). Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Computerized Medical Imaging and Graphics, 43, 64–77. https://doi.org/10.1016/j.compmedimag.2015.03.003
Yasaswini, V., & Baskaran, S. (2021). An optimization of feature selection for classification using modified bat algorithm. International Journal of Information Technology and Computer Science, 13(4), 38–46. https://doi.org/10.5815/ijitcs.2021.04.04
Zhang, Z., Lu, Y., Ye, M., Huang, W., Jin, L., Zhang, G., Ge, Y., Baghban, A., Zhang, Q., Wang, H., & Zhu, W. (2024). A novel evolutionary ensemble prediction model using harmony search and stacking for diabetes diagnosis. Journal of King Saud University - Computer and Information Sciences, 36(1), 101873. https://doi.org/10.1016/j.jksuci.2023.101873
Article Details
Abstract views: 51
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.