Spatial identification of manipulable objects for a bionic hand prosthesis
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
This article presents a method for the spatial identification of objects for bionic upper limb prostheses, utilizing the analysis of digital images captured by an optoelectronic module based on the ESP32-CAM and classified using neural network algorithms, specifically FOMO (MobileNetV2). Modern bionic prostheses that imitate natural limb functions, as well as their advantages and significance for restoring the functionality of the human body, are analysed. An algorithm for a grip-type recognition system is proposed, integrating spatial identification of object shapes with the analysis of myographic signals to enable accurate selection and execution of appropriate manipulations. The neural network was trained on a set of images of basic shapes (spherical, rectangular, cylindrical), which achieved an average identification accuracy of over 89% with a processing time of one image of 2 ms. Due to its compactness and low cost, the developed system is suitable for integration into low-cost prostheses, ensuring adaptation of the movements of the artificial limb to the shape of the objects of manipulation and minimizing the risk of slipping objects. The proposed approach helps to increase the accuracy of movement execution and reduce dependence on expensive and complex technologies. The system has potential for further improvement, as it can operate with objects of complex shapes and handle scenarios involving multiple objects within the camera's field of view simultaneously.
Keywords:
References
Azocar, A. F., Mooney, L. M., Duval, J. F., Simon, A. M., Hargrove, L. J., & Rouse, E. J. (2020). Design and clinical implementation of an open-source bionic leg. Nature biomedical engineering, 4, 941-953. https://doi.org/10.1038/s41551-020-00619-3 DOI: https://doi.org/10.1038/s41551-020-00619-3
Bai, Q., Li, S., Yang, J., Song, Q., Li, Z., & Zhang, X. (2020). Object detection recognition and robot grasping based on machine learning: A survey. IEEE Access, 8, 181855-181879. https://doi.org/10.1109/ACCESS.2020.3028740 DOI: https://doi.org/10.1109/ACCESS.2020.3028740
Cai, M., Kitani, K. M., & Sato, Y. (2016). Understanding hand-object manipulation with grasp types and object attributes. ArXiv, abs/1807.08254. http://dx.doi.org/10.48550/arXiv.1807.08254
Castro, M. C. F., Pinheiro, W. C., & Rigolin, G. (2022). A hybrid 3D printed hand prosthesis prototype based on sEMG and a fully embedded computer vision system. Frontiers in Neurorobotics, 15, 751282. http://dx.doi.org/10.3389/fnbot.2021.751282 DOI: https://doi.org/10.3389/fnbot.2021.751282
Chen, Z., Min, H., Wang, D., Xia, Z., Sun, F., & Fang, B. (2023). A review of myoelectric control for prosthetic hand manipulation. Biomimetics, 8(3), 328. https://doi.org/10.3390/biomimetics8030328 DOI: https://doi.org/10.3390/biomimetics8030328
Chinnery, H., Thompson, S., Noroozi, S., & Dyer, B. T. (2016). Scoping review of the development of artificial eyes throughout the years. Edorium Journal of Disability and Rehabilitation, 3, 1-10. http://dx.doi.org/10.5348/D05-2017-25-RA-1 DOI: https://doi.org/10.5348/D05-2017-25-RA-1
Cini, F., Ortenzi, V., Corke, P., & Controzzi, M. J. S. R. (2019). On the choice of grasp type and location when handing over an object. Science Robotics, 4(27), eaau9757. https://doi.org/10.1126/scirobotics.aau9757 DOI: https://doi.org/10.1126/scirobotics.aau9757
Durve, M., Orsini, S., Tiribocchi, A., Montessori, A., Tucny, J. M., Lauricella, M., Camposeo, A., Pisignano, D., & Succi, S. (2023). Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications. The European Physical Journal E, 46, 32. https://doi.org/10.1140/epje/s10189-023-00290-x DOI: https://doi.org/10.1140/epje/s10189-023-00290-x
Esposito, D., Centracchio, J., Andreozzi, E., Gargiulo, G. D., Naik, G. R., & Bifulco, P. (2021). Biosignal-based human–machine interfaces for assistance and rehabilitation: A survey. Sensors, 21(20), 6863. https://doi.org/10.3390/s21206863 DOI: https://doi.org/10.3390/s21206863
Fejér, A., Nagy, Z., Benois-Pineau, J., Szolgay, P., de Rugy, A., & Domenger, J. P. (2022). Hybrid FPGA–CPU-Based architecture for object recognition in visual servoing of arm prosthesis. Journal of Imaging, 8(2), 44. https://doi.org/10.3390/jimaging8020044 DOI: https://doi.org/10.3390/jimaging8020044
He, Y., Fukuda, O., Yamaguchi, N., Okumura, H., & Arai, K. (2020). Novel control scheme for prosthetic hands through spatial understanding. International Journal of Advanced Computer Science and Applications, 11(10). https://dx.doi.org/10.14569/IJACSA.2020.0111088 DOI: https://doi.org/10.14569/IJACSA.2020.0111088
He, Y., Shima, R., Fukuda, O., Bu, N., Yamaguchi, N., & Okumura, H. (2019). Development of distributed control system for vision-based myoelectric prosthetic hand. IEEE Access, 7, 54542-54549. https://doi.org/10.1109/ACCESS.2019.2911968 DOI: https://doi.org/10.1109/ACCESS.2019.2911968
Huang, S., & Wu, H. (2021). Texture recognition based on perception data from a bionic tactile sensor. Sensors, 21(15), 5224. https://doi.org/10.3390/s21155224 DOI: https://doi.org/10.3390/s21155224
Hurot, C., Scaramozzino, N., Buhot, A., & Hou, Y. (2020). Bio-inspired strategies for improving the selectivity and sensitivity of artificial noses: A review. Sensors, 20(6), 1803. https://doi.org/10.3390/s20061803 DOI: https://doi.org/10.3390/s20061803
James, J. W., Pestell, N., & Lepora, N. F. (2018). Slip detection with a biomimetic tactile sensor. IEEE Robotics and Automation Letters, 3(4), 3340-3346. http://dx.doi.org/10.1109/LRA.2018.2852797 DOI: https://doi.org/10.1109/LRA.2018.2852797
Jiang, N., Chen, C., He, J., Meng, J., Pan, L., Su, S., & Zhu, X. (2023). Bio-robotics research for non-invasive myoelectric neural interfaces for upper-limb prosthetic control: A 10-year perspective review. National Science Review, 10(5), nwad048. https://doi.org/10.1093/nsr/nwad048 DOI: https://doi.org/10.1093/nsr/nwad048
Józwik, J., Zawada-Michałowska, M., Kulisz, M., Tomiło, P., Barszcz, M., Pieśko, P., Leleń, M., & Cybul, K. (2024). Modeling the optimal measurement time with a probe on the machine tool using machine learning methods. Applied Computer Science, 20(2), 43–59. https://doi.org/10.35784/acs-2024-15 DOI: https://doi.org/10.35784/acs-2024-15
Kim, S., Brady, J., Al-Badani, F., Yu, S., Hart, J., Jung, S., Tran, T.-T., & Myung, N. V. (2021). Nanoengineering approaches toward artificial nose. Frontiers in Chemistry, 9, 629329. https://doi.org/10.3389/fchem.2021.629329 DOI: https://doi.org/10.3389/fchem.2021.629329
Kim, S., Choi, Y. Y., Kim, T., Kim, Y. M., Ho, D. H., Choi, Y. J., Roe, D. G., Lee, J.-H., Park, J., Choi, J.-W., Kim, J. W., Park, J.-H. Jo, S. B., Moon, H. C., Jeong, S., & Cho, J. H. (2022). A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections. Nature communications, 13(1), 6760. https://doi.org/10.1038/s41467-022-34448-6 DOI: https://doi.org/10.1038/s41467-022-34448-6
Lan, N., Zhang, J., Zhang, Z., Chou, C. H., Rymer, W. Z., Niu, C. M., & Fang, P. (2023). Biorealistic hand prosthesis with compliance control and noninvasive somatotopic sensory feedback. Progress in Biomedical Engineering, 5, 023001. https://doi.org/10.1088/2516-1091/acc625 DOI: https://doi.org/10.1088/2516-1091/acc625
Lee, K. H., Min, J. Y., & Byun, S. (2021). Electromyogram-based classification of hand and finger gestures using artificial neural networks. Sensors, 22(1), 225. https://doi.org/10.3390/s22010225 DOI: https://doi.org/10.3390/s22010225
Lin, Z., Zheng, H., Lu, Y., Zhang, J., Chai, G., & Zuo, G. (2024). Object surface roughness/texture recognition using machine vision enables for human-machine haptic interaction. Frontiers in Computer Science, 6, 1401560. https://doi.org/10.3389/fcomp.2024.1401560 DOI: https://doi.org/10.3389/fcomp.2024.1401560
Llop-Harillo, I., Pérez-González, A., Starke, J., & Asfour, T. (2019). The anthropomorphic hand assessment protocol (AHAP). Robotics and Autonomous Systems, 121, 103259. https://doi.org/10.1016/j.robot.2019.103259 DOI: https://doi.org/10.1016/j.robot.2019.103259
Luo, Z., Bi, Y., Yang, X., Li, Y., Yu, S., Wu, M., & Ye, Q. (2024). Enhanced YOLOv5s+ DeepSORT method for highway vehicle speed detection and multi-sensor verification. Frontiers in Physics, 12, 1371320. https://doi.org/10.3389/fphy.2024.1371320 DOI: https://doi.org/10.3389/fphy.2024.1371320
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Mereu, F., Leone, F., Gentile, C., Cordella, F., Gruppioni, E., & Zollo, L. (2021). Control strategies and performance assessment of upper-limb TMR prostheses: A review. Sensors, 21(6), 1953. https://doi.org/10.3390/s21061953 DOI: https://doi.org/10.3390/s21061953
Ortiz-Catalan, M., Zbinden, J., Millenaar, J., D’Accolti, D., Controzzi, M., Clemente, F., Cappello, L., Earley, E. J., Mastinu, E., Kolankowska, J., Munoz-Novoa, M., Jönsson, S., Cipriani, C., Sassu, P., & Brånemark, R. (2023). A highly integrated bionic hand with neural control and feedback for use in daily life. Science robotics, 8(83), eadf7360. https://doi.org/10.1126/scirobotics.adf7360 DOI: https://doi.org/10.1126/scirobotics.adf7360
Roy, A. C., Hossin, K., Uddin, M. P., Al Mamun, M. A., Afjal, M. I., & Nitu, A. M. (2018). Detection and classification of geometric shape objects for industrial applications. Advancement in Image Processing and Pattern Recognition, 1(2), 11-19.
Said, S., Boulkaibet, I., Sheikh, M., Karar, A. S., Alkork, S., & Naït-Ali, A. (2020). Machine-learning-based muscle control of a 3D-printed bionic arm. Sensors, 20(11), 3144. https://doi.org/10.3390/s20113144 DOI: https://doi.org/10.3390/s20113144
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. IEEE conference on computer vision and pattern recognition (pp. 4510-4520). IEEE. http://dx.doi.org/10.1109/CVPR.2018.00474 DOI: https://doi.org/10.1109/CVPR.2018.00474
Sensinger, J. W., & Dosen, S. (2020). A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Frontiers in neuroscience, 14, 345. https://doi.org/10.3389/fnins.2020.00345 DOI: https://doi.org/10.3389/fnins.2020.00345
Sharma, A., Roo, J. S., & Steimle, J. (2019). Grasping microgestures: Eliciting single-hand microgestures for handheld objects. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-13). Association for Computing Machinery. https://doi.org/10.1145/3290605.3300632 DOI: https://doi.org/10.1145/3290605.3300632
Shi, X., Wang, Y., & Qin, L. (2023). Surface recognition with a Bio-inspired Tactile Fingertip. IEEE Sensors Journal, 23(16), 18842–18855. http://dx.doi.org/10.1109/JSEN.2023.3291720 DOI: https://doi.org/10.1109/JSEN.2023.3291720
Tran, M., Gabert, L., Hood, S., & Lenzi, T. (2022). A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint. Science robotics, 7(72), eabo3996. https://doi.org/10.1126/scirobotics.abo3996 DOI: https://doi.org/10.1126/scirobotics.abo3996
Vásquez, A., & Perdereau, V. (2017). Proprioceptive shape signatures for object manipulation and recognition purposes in a robotic hand. Robotics and Autonomous Systems, 98, 135-146. https://doi.org/10.1016/j.robot.2017.06.001 DOI: https://doi.org/10.1016/j.robot.2017.06.001
Vonsevych, K. (2024). Myographic system of the bionic wrist with surface type identification. In M. Bezuglyi, N. Bouraou, V. Mykytenko, G. Tymchyk, & A. Zaporozhets (Eds.), Advanced System Development Technologies I (Vol. 511, pp. 193–228). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44347-3_6 DOI: https://doi.org/10.1007/978-3-031-44347-3_6
Vonsevych, K., Goethel, M.F., & Mrozowski, J., Awrejcewicz, J., & Bezuglyi, M. (2019). Fingers movements control system based on artificial neural network model. Radioelectronics and Communications Systems, 62, 23–33. https://doi.org/10.3103/S0735272719010047 DOI: https://doi.org/10.3103/S0735272719010047
Vonsevych, K. P., Bezuglyi, M. A., & Prytula, O. A. (2019). Optical feedback based on photometry by ellipsoidal reflector in bionic fingers application. KPI Science News, 3, 63–72. https://doi.org/10.20535/kpi-sn.2019.3.175785 DOI: https://doi.org/10.20535/kpi-sn.2019.3.175785
Wang, J., & Li, S. (2021). Grasp detection via visual rotation object detection and point cloud spatial feature scoring. International Journal of Advanced Robotic Systems, 18(6). http://dx.doi.org/10.1177/17298814211055577 DOI: https://doi.org/10.1177/17298814211055577
Wei, A. H., & Chen, B. Y. (2020). Robotic object recognition and grasping with a natural background. International Journal of Advanced Robotic Systems, 17(2). http://dx.doi.org/10.1177/1729881420921102 DOI: https://doi.org/10.1177/1729881420921102
Wijk, U., Björkman, A., Carlsson, I., Kristjansdottir, F., Mrkonjic, A., Rosén, B., & Antfolk, C. (2024). А bionic hand vs. a replanted hand. Journal of Rehabilitation medicine. Clinical Communications, 7, 24845. https://doi.org/10.2340/jrmcc.v7.24854 DOI: https://doi.org/10.2340/jrmcc.v7.24854
Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. Proceedings of the first workshop on evaluation and comparison of NLP systems (pp. 79-91). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.eval4nlp-1.9 DOI: https://doi.org/10.18653/v1/2020.eval4nlp-1.9
Zbinden, J., Molin, J., & Ortiz-Catalan, M. (2024). Deep learning for enhanced prosthetic control: Real-time motor intent decoding for simultaneous control of artificial limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 1177-1186. https://doi.org/10.1109/tnsre.2024.3371896 DOI: https://doi.org/10.1109/TNSRE.2024.3371896
Zeng, B., Liu, H., Song, H., Zhao, Z., Fan, S., Jiang, L., Liu, Y., Yu, Z., Zhu, X., Chen, J., & Zhang, T. (2022). Design and slip prevention control of a multi-sensory anthropomorphic prosthetic hand. Industrial Robot: The International Journal of Robotics Research and Application, 49(2), 289-300. http://dx.doi.org/10.1108/IR-07-2021-0133 DOI: https://doi.org/10.1108/IR-07-2021-0133
Zhang, J., Li, M., Feng, Y., & Yang, C. (2020). Robotic grasp detection based on image processing and random forest. Multimedia Tools and Applications, 79, 2427-2446. https://doi.org/10.1007/s11042-019-08302-9 DOI: https://doi.org/10.1007/s11042-019-08302-9
Article Details
Abstract views: 96
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.