Azocar, A. F., Mooney, L. M., Duval, J. F., Simon, A. M., Hargrove, L. J., & Rouse, E. J. (2020). Design and clinical implementation of an open-source bionic leg. Nature biomedical engineering, 4, 941-953. https://doi.org/10.1038/s41551-020-00619-3
Bai, Q., Li, S., Yang, J., Song, Q., Li, Z., & Zhang, X. (2020). Object detection recognition and robot grasping based on machine learning: A survey. IEEE Access, 8, 181855-181879. https://doi.org/10.1109/ACCESS.2020.3028740
Cai, M., Kitani, K. M., & Sato, Y. (2016). Understanding hand-object manipulation with grasp types and object attributes. ArXiv, abs/1807.08254. http://dx.doi.org/10.48550/arXiv.1807.08254
Castro, M. C. F., Pinheiro, W. C., & Rigolin, G. (2022). A hybrid 3D printed hand prosthesis prototype based on sEMG and a fully embedded computer vision system. Frontiers in Neurorobotics, 15, 751282. http://dx.doi.org/10.3389/fnbot.2021.751282
Chen, Z., Min, H., Wang, D., Xia, Z., Sun, F., & Fang, B. (2023). A review of myoelectric control for prosthetic hand manipulation. Biomimetics, 8(3), 328. https://doi.org/10.3390/biomimetics8030328
Chinnery, H., Thompson, S., Noroozi, S., & Dyer, B. T. (2016). Scoping review of the development of artificial eyes throughout the years. Edorium Journal of Disability and Rehabilitation, 3, 1-10. http://dx.doi.org/10.5348/D05-2017-25-RA-1
Cini, F., Ortenzi, V., Corke, P., & Controzzi, M. J. S. R. (2019). On the choice of grasp type and location when handing over an object. Science Robotics, 4(27), eaau9757. https://doi.org/10.1126/scirobotics.aau9757
Durve, M., Orsini, S., Tiribocchi, A., Montessori, A., Tucny, J. M., Lauricella, M., Camposeo, A., Pisignano, D., & Succi, S. (2023). Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications. The European Physical Journal E, 46, 32. https://doi.org/10.1140/epje/s10189-023-00290-x
Esposito, D., Centracchio, J., Andreozzi, E., Gargiulo, G. D., Naik, G. R., & Bifulco, P. (2021). Biosignal-based human–machine interfaces for assistance and rehabilitation: A survey. Sensors, 21(20), 6863. https://doi.org/10.3390/s21206863
Fejér, A., Nagy, Z., Benois-Pineau, J., Szolgay, P., de Rugy, A., & Domenger, J. P. (2022). Hybrid FPGA–CPU-Based architecture for object recognition in visual servoing of arm prosthesis. Journal of Imaging, 8(2), 44. https://doi.org/10.3390/jimaging8020044
He, Y., Fukuda, O., Yamaguchi, N., Okumura, H., & Arai, K. (2020). Novel control scheme for prosthetic hands through spatial understanding. International Journal of Advanced Computer Science and Applications, 11(10). https://dx.doi.org/10.14569/IJACSA.2020.0111088
He, Y., Shima, R., Fukuda, O., Bu, N., Yamaguchi, N., & Okumura, H. (2019). Development of distributed control system for vision-based myoelectric prosthetic hand. IEEE Access, 7, 54542-54549. https://doi.org/10.1109/ACCESS.2019.2911968
Huang, S., & Wu, H. (2021). Texture recognition based on perception data from a bionic tactile sensor. Sensors, 21(15), 5224. https://doi.org/10.3390/s21155224
Hurot, C., Scaramozzino, N., Buhot, A., & Hou, Y. (2020). Bio-inspired strategies for improving the selectivity and sensitivity of artificial noses: A review. Sensors, 20(6), 1803. https://doi.org/10.3390/s20061803
James, J. W., Pestell, N., & Lepora, N. F. (2018). Slip detection with a biomimetic tactile sensor. IEEE Robotics and Automation Letters, 3(4), 3340-3346. http://dx.doi.org/10.1109/LRA.2018.2852797
Jiang, N., Chen, C., He, J., Meng, J., Pan, L., Su, S., & Zhu, X. (2023). Bio-robotics research for non-invasive myoelectric neural interfaces for upper-limb prosthetic control: A 10-year perspective review. National Science Review, 10(5), nwad048. https://doi.org/10.1093/nsr/nwad048
Józwik, J., Zawada-Michałowska, M., Kulisz, M., Tomiło, P., Barszcz, M., Pieśko, P., Leleń, M., & Cybul, K. (2024). Modeling the optimal measurement time with a probe on the machine tool using machine learning methods. Applied Computer Science, 20(2), 43–59. https://doi.org/10.35784/acs-2024-15
Kim, S., Brady, J., Al-Badani, F., Yu, S., Hart, J., Jung, S., Tran, T.-T., & Myung, N. V. (2021). Nanoengineering approaches toward artificial nose. Frontiers in Chemistry, 9, 629329. https://doi.org/10.3389/fchem.2021.629329
Kim, S., Choi, Y. Y., Kim, T., Kim, Y. M., Ho, D. H., Choi, Y. J., Roe, D. G., Lee, J.-H., Park, J., Choi, J.-W., Kim, J. W., Park, J.-H. Jo, S. B., Moon, H. C., Jeong, S., & Cho, J. H. (2022). A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections. Nature communications, 13(1), 6760. https://doi.org/10.1038/s41467-022-34448-6
Lan, N., Zhang, J., Zhang, Z., Chou, C. H., Rymer, W. Z., Niu, C. M., & Fang, P. (2023). Biorealistic hand prosthesis with compliance control and noninvasive somatotopic sensory feedback. Progress in Biomedical Engineering, 5, 023001. https://doi.org/10.1088/2516-1091/acc625
Lee, K. H., Min, J. Y., & Byun, S. (2021). Electromyogram-based classification of hand and finger gestures using artificial neural networks. Sensors, 22(1), 225. https://doi.org/10.3390/s22010225
Lin, Z., Zheng, H., Lu, Y., Zhang, J., Chai, G., & Zuo, G. (2024). Object surface roughness/texture recognition using machine vision enables for human-machine haptic interaction. Frontiers in Computer Science, 6, 1401560. https://doi.org/10.3389/fcomp.2024.1401560
Llop-Harillo, I., Pérez-González, A., Starke, J., & Asfour, T. (2019). The anthropomorphic hand assessment protocol (AHAP). Robotics and Autonomous Systems, 121, 103259. https://doi.org/10.1016/j.robot.2019.103259
Luo, Z., Bi, Y., Yang, X., Li, Y., Yu, S., Wu, M., & Ye, Q. (2024). Enhanced YOLOv5s+ DeepSORT method for highway vehicle speed detection and multi-sensor verification. Frontiers in Physics, 12, 1371320. https://doi.org/10.3389/fphy.2024.1371320
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18
Mereu, F., Leone, F., Gentile, C., Cordella, F., Gruppioni, E., & Zollo, L. (2021). Control strategies and performance assessment of upper-limb TMR prostheses: A review. Sensors, 21(6), 1953. https://doi.org/10.3390/s21061953
Ortiz-Catalan, M., Zbinden, J., Millenaar, J., D’Accolti, D., Controzzi, M., Clemente, F., Cappello, L., Earley, E. J., Mastinu, E., Kolankowska, J., Munoz-Novoa, M., Jönsson, S., Cipriani, C., Sassu, P., & Brånemark, R. (2023). A highly integrated bionic hand with neural control and feedback for use in daily life. Science robotics, 8(83), eadf7360. https://doi.org/10.1126/scirobotics.adf7360
Roy, A. C., Hossin, K., Uddin, M. P., Al Mamun, M. A., Afjal, M. I., & Nitu, A. M. (2018). Detection and classification of geometric shape objects for industrial applications. Advancement in Image Processing and Pattern Recognition, 1(2), 11-19.
Said, S., Boulkaibet, I., Sheikh, M., Karar, A. S., Alkork, S., & Naït-Ali, A. (2020). Machine-learning-based muscle control of a 3D-printed bionic arm. Sensors, 20(11), 3144. https://doi.org/10.3390/s20113144
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. IEEE conference on computer vision and pattern recognition (pp. 4510-4520). IEEE. http://dx.doi.org/10.1109/CVPR.2018.00474
Sensinger, J. W., & Dosen, S. (2020). A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Frontiers in neuroscience, 14, 345. https://doi.org/10.3389/fnins.2020.00345
Sharma, A., Roo, J. S., & Steimle, J. (2019). Grasping microgestures: Eliciting single-hand microgestures for handheld objects. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-13). Association for Computing Machinery. https://doi.org/10.1145/3290605.3300632
Shi, X., Wang, Y., & Qin, L. (2023). Surface recognition with a Bio-inspired Tactile Fingertip. IEEE Sensors Journal, 23(16), 18842–18855. http://dx.doi.org/10.1109/JSEN.2023.3291720
Tran, M., Gabert, L., Hood, S., & Lenzi, T. (2022). A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint. Science robotics, 7(72), eabo3996. https://doi.org/10.1126/scirobotics.abo3996
Vásquez, A., & Perdereau, V. (2017). Proprioceptive shape signatures for object manipulation and recognition purposes in a robotic hand. Robotics and Autonomous Systems, 98, 135-146. https://doi.org/10.1016/j.robot.2017.06.001
Vonsevych, K. (2024). Myographic system of the bionic wrist with surface type identification. In M. Bezuglyi, N. Bouraou, V. Mykytenko, G. Tymchyk, & A. Zaporozhets (Eds.), Advanced System Development Technologies I (Vol. 511, pp. 193–228). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44347-3_6
Vonsevych, K., Goethel, M.F., & Mrozowski, J., Awrejcewicz, J., & Bezuglyi, M. (2019). Fingers movements control system based on artificial neural network model. Radioelectronics and Communications Systems, 62, 23–33. https://doi.org/10.3103/S0735272719010047
Vonsevych, K. P., Bezuglyi, M. A., & Prytula, O. A. (2019). Optical feedback based on photometry by ellipsoidal reflector in bionic fingers application. KPI Science News, 3, 63–72. https://doi.org/10.20535/kpi-sn.2019.3.175785
Wang, J., & Li, S. (2021). Grasp detection via visual rotation object detection and point cloud spatial feature scoring. International Journal of Advanced Robotic Systems, 18(6). http://dx.doi.org/10.1177/17298814211055577
Wei, A. H., & Chen, B. Y. (2020). Robotic object recognition and grasping with a natural background. International Journal of Advanced Robotic Systems, 17(2). http://dx.doi.org/10.1177/1729881420921102
Wijk, U., Björkman, A., Carlsson, I., Kristjansdottir, F., Mrkonjic, A., Rosén, B., & Antfolk, C. (2024). А bionic hand vs. a replanted hand. Journal of Rehabilitation medicine. Clinical Communications, 7, 24845. https://doi.org/10.2340/jrmcc.v7.24854
Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. Proceedings of the first workshop on evaluation and comparison of NLP systems (pp. 79-91). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.eval4nlp-1.9
Zbinden, J., Molin, J., & Ortiz-Catalan, M. (2024). Deep learning for enhanced prosthetic control: Real-time motor intent decoding for simultaneous control of artificial limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 1177-1186. https://doi.org/10.1109/tnsre.2024.3371896
Zeng, B., Liu, H., Song, H., Zhao, Z., Fan, S., Jiang, L., Liu, Y., Yu, Z., Zhu, X., Chen, J., & Zhang, T. (2022). Design and slip prevention control of a multi-sensory anthropomorphic prosthetic hand. Industrial Robot: The International Journal of Robotics Research and Application, 49(2), 289-300. http://dx.doi.org/10.1108/IR-07-2021-0133
Zhang, J., Li, M., Feng, Y., & Yang, C. (2020). Robotic grasp detection based on image processing and random forest. Multimedia Tools and Applications, 79, 2427-2446. https://doi.org/10.1007/s11042-019-08302-9