Alshoaibi, A. M., & Fageehi, Y. A. (2022). A computational framework for 2D crack growth based on the adaptive finite element method. Applied Sciences, 13(1), 284. https://doi.org/10.3390/app13010284
Azouggagh, M. (2018). Etude numerique de la propagation de fissure de fatigue dans l’acier inoxydable aust´enitique 304L. Mémoire de thése doctorat d’université Moulay Ismail.
Bartaula, D., Li, Y., Koduru, S., & Adeeb, S. (2020). Simulation of fatigue crack growth using XFEM. Pressure Vessels and Piping Conference (pp. V003T03A046). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2020-21637
Chen, J., Zhou, X., Zhou, L., & Berto, F. (2020). Simple and effective approach to modeling crack propagation in the framework of extended finite element method. Theoretical and Applied Fracture Mechanics, 106, 102452. https://doi.org/10.1016/j.tafmec.2019.102452
Cherepanov, G. P. (1967). The propagation of cracks in a continuous media. Journal of Applied Mathematics and Mechanics, 31(3), 503-512. https://doi.org/10.1016/0021-8928(67)90034-2
El Fakkoussi, S., Moustabchir, H., Elkhalfi, A., & Pruncu, C. I. (2018). Application of the extended sogeometric analysis (X‐IGA) to evaluate a pipeline structure containing an external crack. Journal of Engineering, 2018(1), 4125765. https://doi.org/10.1155/2018/4125765
Eshelby, J. D. (1956). The continuum theory of lattice defects. Solid State Physics, 3, 79-144. https://doi.org/10.1016/S0081-1947(08)60132-0
Lee, S., & Martin, D. (2016). Application of XFEM to model stationary crack and crack propagation for pressure containing subsea equipment. Pressure Vessels and Piping Conference (pp. V005T05A006). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2016-63199
Lin, M., Li, Y., Salem, M., Cheng, J. R., Adeeb, S., & Kainat, M. (2020). A parametric study of variable crack initiation criterion in XFEM on pipeline steel. Pressure Vessels and Piping Conference (pp. PVP2020-21664). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2020-21664
Lone, A. S., Harmain, G. A., & Jameel, A. (2023). Modeling of contact interfaces by penalty based enriched finite element method. Mechanics of Advanced Materials and Structures, 30(7), 1485-1503. https://doi.org/10.1080/15376494.2022.2034075
Merle, R., & Dolbow, J. (2002). Solving thermal and phase change problems with the extended finite element method. Computational Mechanics, 28, 339-350. http://dx.doi.org/10.1007/s00466-002-0298-y
Ministère du Développement durable. (2014). Rupture d’une canalisation de transport de pétrole brut. https://www.aria.developpement-durable.gouv.fr/wp-content/files_mf/A45229_11fd_45229_stvigorddymonville_jfm.pdf
Moës, N., Gravouil, A., & Belytschko, T. (2002). Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model. International journal for numerical methods in engineering, 53(11), 2549-2568. https://doi.org/10.1002/nme.429
Montassir, S., Yakoubi, K., Moustabchir, H., Elkhalfi, A., Rajak, D. K., & Pruncu, C. I. (2020). Analysis of crack behaviour in pipeline system using FAD diagram based on numerical simulation under XFEM. Applied Sciences, 10(17), 6129. https://doi.org/10.3390/app10176129
Okodi, A., Lin, M., Yoosef-Ghodsi, N., Kainat, M., Hassanien, S., & Adeeb, S. (2020). Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method. International Journal of Pressure Vessels and Piping, 184, 104115. https://doi.org/10.1016/j.ijpvp.2020.104115
Rahman, S., Ghadiali, N., Wilkowski, G. M., Moberg, F., & Brickstad, B. (1998). Crack-opening-area analyses for circumferential through-wall cracks in pipes—Part III: off-center cracks, restraint of bending, thickness transition and weld residual stresses. International Journal of Pressure Vessels and Piping, 75(5), 397-415. https://doi.org/10.1016/S0308-0161(97)00083-5
Raju, I. S., & Newman Jr, J. C. (1982). Stress-intensity factors for internal and external surface cracks in cylindrical vessels. Journal of Pressure Vessel Technology, 104. 293-298.
Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35, 379-386.
Rogalski, G., Świerczyńska, A., Landowski, M., & Fydrych, D. (2020). Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals, 10(5), 559. https://doi.org/10.3390/met10050559
Salmi, H., El Had, K., El Bhilat, H., & Hachim, A. (2019). Numerical analysis of the effect of external circumferential elliptical cracks in transition thickness zone of pressurized pipes using XFEM. Journal of Applied and Computational Mechanics, 5(5), 861-874. http://dx.doi.org/10.22055/JACM.2019.28043.1452
Salmi, H., El Had, K., El Bhilat, H., & Hachim, A. (2020a). Numerical study of SIF for a crack in P265GH steel by XFEM. Recent Advances in Mathematics and Technology: Proceedings of the First International Conference on Technology, Engineering, and Mathematics (pp. 105-127). Springer International Publishing.
Salmi, H., Hachim, A., El Bhilat, H., & El Had, K. (2020b). Crack influence on a pipe with double slope under internal pressure: Numerical simulation with XFEM. IIUM Engineering Journal, 21(2), 266-283. http://dx.doi.org/10.31436/iiumej.v21i2.1454
Sanchez-Silva, M., Klutke, G. A., & Rosowsky, D. V. (2011). Life-cycle performance of structures subject to multiple deterioration mechanisms. Structural Safety, 33(3), 206-217. http://dx.doi.org/10.1016/j.strusafe.2011.03.003
Tang, J. E., Halvarsson, M., Asteman, H., & Svensson, J. E. (2001). The microstructure of the base oxide on 304L steel. Micron, 32(8), 799-805.
Wang, Y. Z., Li, G. Q., Wang, Y. B., & Lyu, Y. F. (2021). Simplified method to identify full von Mises stress-strain curve of structural metals. Journal of Constructional Steel Research, 181, 106624. https://doi.org/10.1016/j.jcsr.2021.106624
Xiao, G., Wen, L., & Tian, R. (2021). Arbitrary 3D crack propagation with Improved XFEM: Accurate and efficient crack geometries. Computer Methods in Applied Mechanics and Engineering, 377, 113659. https://doi.org/10.1016/j.cma.2020.113659
Yu, M. C., & Pan, W. F. (2023). Failure of elliptical tubes with different long–short axis ratios under cyclic bending in different directions. Metals, 13(11), 1891. https://doi.org/10.3390/met13111891
Zheng, Y., Dong, Z., Zhang, X., & Shi, H. (2024). Pipeline reliability assessment and predictive maintenance considering multi-crack dependent degradation. Journal of Engineering Manufacture, 238(8), 1122-1144. http://dx.doi.org/10.1177/0954