ANALYSIS OF THE EFFECTIVENESS OF SELECTED SEGMENTATION METHODS OF ANATOMICAL BRAIN STRUCTURES


Abstract

An important aspect of analysis medical images is acknowledging the role of the segmentation process of individual anatomical structures. This process allows to show the most important diagnostic details. Owing to the segmentation the areas of interest (ROI) it is possible to adapt the methods of further image analysis considering the specification of selected elements. This process has been widely used in medical diagnostics. The article presents the use of segmentation by thresholding, segmentation by region growth and by edge detection to extract the parts of the human brain the user is interested in. The series of MRI (magnetic resonance imaging) images were used. The aim of the research was to develop the methods that would allow comparing the effectiveness various types of anatomical brain structures’ segmentation in two dimensions. The above methods present the different impact that selected types of segmentation, masks or parameters have on the most accurate depiction of a selected human brain element.


Keywords

brain imaging; image segmentation; magnetic resonance imaging

Avrunin O. G., Tymkovych M. Y., Moskovko S. P., Romanyuk S. O., Kotyra A., Smailova S.: Using a priori data for segmentation anatomical structures of the brain. Przegląd Elektrotechniczny 93/2017, 102–105.

Bellon O. R., Silva L.: New improvements to range image segmentation by edge detection. IEEE Signal Processing Letters 9/2002, 43–45.

Bernstein M. A., King K. F., Xiadhong J. Z.: Handbook of MRI pulse sequences. Amsterdam. Elsevier, 2004.

Boskovitz V., Guterman H.: An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Transactions on Fuzzy Systems 10/2002, 247–262.

Hidayatullah R. R., Sigit R., Wasista S.: Segmentation of head CT-scan to calculate percentage of brain hemorrhage volume. Knowledge Creation and Intelligent Computing (IES-KCIC), IEEE, 2017, [DOI: 10.1109/KCIC.2017.8228603].

Kaganami H. G., Beiji Z.: Region-Based Segmentation versus Edge Detection. Intelligent Information Hiding and Multimedia Signal Processing IIH-MSP'09. Fifth International Conference, 2009.

Rebouças E. S., Braga A. M., Sarmento R. M.: Level Set Based on Brain Radiological Densities for Stroke Segmentation in CT Images. Computer-Based Medical Systems (CBMS), IEEE 2017 [DOI: 10.1109/CBMS.2017.172]

Sharma N., Aggarwal L. M.: Automated medical image segmentation techniques. J. Med. Phys. 35/2010, 3–14.

Suri J. S., Setarehdan S. K., Singh S.: Advanced Algorithmic Approaches to Medical Image Segmentation. Springer, 2002.

Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Postępu Telekomunikacji, Kraków 1997.

Tadeusiewicz R., Śmietański J.: Pozyskiwanie obrazów medycznych oraz ich przetwarzanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja. Wydawnictwo Studenckiego Towarzystwa Naukowego, Kraków 2011.

Ulagamuthalvi V., Kulanthaivel G.: An novel approach for segmentation using brain images. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT ), IEEE, 2017.

Wróbel Z., Koprowski R.: Praktyka przetwarzania obrazów z zadaniami w programie Matlab. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2012.

Yahiaoui A. F. Z., Bessaid A.: Segmentation of ischemic stroke area from CT brain images, Signal, Image, Video and Communications (ISIVC), IEEE 2017 [DOI: 10.1109/ISIVC.2016.7893954].

Download

Published : 2018-05-30


Dzierżak, R., & Michalska, M. (2018). ANALYSIS OF THE EFFECTIVENESS OF SELECTED SEGMENTATION METHODS OF ANATOMICAL BRAIN STRUCTURES . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(2), 58-61. https://doi.org/10.5604/01.3001.0012.0713

Róża Dzierżak  r.dzierzak@pollub.pl
Lublin University of Technology, Institute of Electronics and Information Technology  Poland
Magdalena Michalska 
Lublin University of Technology, Institute of Electronics and Information Technology  Poland