ANALYSIS OF METROLOGICAL PROPERTIES FIBER BRAGG GRATINGS WITH A CONSTANT AND VARIABLE PERIOD
Tomasz Zieliński
tomasz.zielinski.1992@gmail.comLublin University of Technology, Institute of Electronics and Information Technology (Poland)
Piotr Kisała
Lublin University of Technology, Institute of Electronics and Information Technology (Poland)
Abstract
The paper presents periodic structures in terms of metrological properties in the distinction for a fiber Bragg grating (FBG) with a constant and changeable period. The process of their formation and characteristics as well as applications in many areas have been described. On the basis of the literature, the results of research and measurements of measurable quantities such as temperature and stress made by periodic structures applied to the fiber of the optical fiber are presented. Analysis of the presented measurements allowed to mark the ranges and accuracy of measurements of individual applications.
Keywords:
fiber Bragg grating, optical sensors, uniform fiber Bragg grating, chirped fiber Bragg gratingReferences
Albert J., Hill K.O., Malo B., Theriault S., Bilodeau F., Erickson L.E.: Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency. Electron. Lett. 31, 1995, 222–223.
Google Scholar
Anderson D.Z., Mizrahi V., Erdogan T., White A. E.: Production of in-fiber gratings using a diffractive optical element. Electron. Lett. 29, 1993, 566–568.
Google Scholar
Azaña J., Chen L.R., Muriel M.A., Smith P.W.E.: Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings. Electron. Lett. 35(25), 1999, 2223–2224.
Google Scholar
Barbarin Y.: Dynamic measurements of physical quantities in extreme environment using fiber Bragg grating. 27th Optical Fiber Sensors Conference (OFS), IEEE, 2017, 1–4.
Google Scholar
Canning J.:Fibre gratings and devices for sensors and lasers. Laser & Photonics Reviews 2(4), 2008, 275–289.
Google Scholar
Deepa S., Bhargab D.: Pico-strain-level dynamic perturbation measurement using ᴨFBG sensor. arXiv preprint arXiv:1710.04206, 2017.
Google Scholar
Dziuda Ł., Krej M., Lewandowski J., Różanowski K., Skibniewski F.: Światłowodowy czujnik czynności oddechowej i rytmu serca. Polski Przegląd Medycyny i Psychologii Lotniczej 3(17), 2011.
Google Scholar
Eggleton B.J., Nielsen T.N., Rogers J.A., Westbrook P.S., Strasser T.A., Hansen P. B., Dreyer K.F.: Dispersion compensation in 20 Gbit/s dynamic nonlinear lightwave systems using electrically tunable chirped fiber grating. Electron. Lett. 35, 1999, 832–833.
Google Scholar
Eggleton B.J., Rogers J.A., Westbrook P.S., Strasser T.A.: Electrically tunable power efficient dispersion compensating fiber Bragg grating. IEEE Photonics Technology Letters 11(7), 1999, 854–856.
Google Scholar
Fernandez A.F., Berghmans F., Brichard B., Mégret P., Decréton M., Blondel M., Delchambre A.: Multi-component force sensor based on multiplexed fibre Bragg grating strain sensors. Meas. Sci. Technol. 12(7), 2001, 810.
Google Scholar
Garrett L.D., Gnauck A.H., Forgherieri, Scarano D.: 8 X 20 Gb/s–315 km–480 km WDM transmission over conventional fiber using multiple broadband fiber gratings. Tech. Digest of Conf. On Opt. Fiber Commun. OFC '98, Post-Deadline paper, PD18, 1998, 1–4.
Google Scholar
Hill P.C., Eggelton B.J.: Strain gradient chirp of fibre Bragg gratings. Electronics Letters 30(14), 1994, 1172–1174.
Google Scholar
Hill K.O., Bilodeau F., Malo B., Kitagawa T., Thériault S., Johnson D. C., Albert J., Takiguchi K.:Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett. 19(17), 1994, 1314–1316.
Google Scholar
Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S.: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 1978, 647–649.
Google Scholar
Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1993, 1035–1037.
Google Scholar
Hill K.O., Meltz G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1997, 1263–1275.
Google Scholar
Ikhlef A.: Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method. International Journal of Computer Science Issues 9(1), 2012, 368–374.
Google Scholar
James S.W., Dockney M.L., Tatam R.P.: Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electronics Letters 32(12), 1996, 1133–1134.
Google Scholar
Kalli K., Simpson G., Dobb H., Komodromos M., Webb D., Bennion I.: Annealing and temperature coefficient study of type IA fibre Bragg gratings inscribed under strain and no strain-implications to optical fibre component reliability. Proc. SPIE 6193, 2006.
Google Scholar
Kashyap R.: Fiber Bragg Gratings. New York, Academic, 1999.
Google Scholar
Kisała P., Klimek J., Skorupski K.: W pełni optyczny przełącznik wykorzystujący jednorodne światłowodowe siatki Bragga. Przegląd Elektrotechniczny 91(11), 2015, 266–270.
Google Scholar
Kisała P., Cięszczyk S.: Method of simultaneous measurement of two direction force and temperature using fbg sensor head. Appl. Opt. 54, 2015, 2677–2687.
Google Scholar
Kisała P.: Generation of a zone chirp in uniform Bragg grating as a way of obtaining double functionality of a sensor. Metrology and Measurement Systems 4, 2012, 727–738.
Google Scholar
Kisała P.: Method of simultaneous measurement of bending forces and temperature using Bragg gratings. Proc. SPIE 9506, Optical Sensors, 2015.
Google Scholar
Kisała P.: Optoelectronic sensor for simultaneous and independent temperature and elongation measurement using Bragg gratings. Przegląd Elektrotechniczny 11a, 2012, 343–346.
Google Scholar
Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Politechnika Lubelska, 2012.
Google Scholar
Laming R.I., Ibsen M., Durkin M., Cole M.J., Zervas M.N., Ennser K.E., Gusmeroli V.: Dispersion compensation gratings. Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides, Applications and Fundamentals. OSA Technical Digest Series (Optical Society of America, Washington, DC) 17, Paper BTuA7, 1997, 271–273.
Google Scholar
Lazaro J.M., Quintela A., Tarnowski K., Wojcik J., Urbanczyk W., Lopez-Higuera J.M.: Experimental characterization of the spectral effective index dependence of index-guided photonic crystal fibers. Meas. Sci. Technol. 21, Paper 055111, 2010.
Google Scholar
Li Y., Yang M., Wang D.N., Lu J., Sun T., Grattan, K.T.: Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Optics express 17(22), 2009, 19785–19790.
Google Scholar
Liao C., Li Y., Wan, D.N., Sun T., Grattan K.T.V.: Morphology and Thermal Stability of Fiber Bragg Gratings for Sensor Applications Written in H_2-Free and H_2-Loaded Fibers by Femtosecond Laser. IEEE Sensors Journal 10(11), 2010, 1675–1681.
Google Scholar
Lima H.F., Antunes P.F., de Lemos Pinto J., Nogueira R.N.: Simultaneous measurement of strain and temperature with a single fiber Bragg grating written in a tapered optical fiber. IEEE Sensors Journal 10(2), 2010, 269–273.
Google Scholar
Liu Y., Williams J.A.R., Zhang L., Bennion, I.: Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers. Optics letters 27(8), 2002, 586–588.
Google Scholar
Loh W.H., Laming R.I., Robinson N., Cavaciuti A., Vaninetti, Anderson C.J., Zervas M.N., Cole M.J.: Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings. IEEE Photon. Technol. Lett. 8, 1996, 944.
Google Scholar
Maheshwari M., Tjin S.C., Yang Y., Asundi A.: Wavelength-shifted chirped FBGs for temperature compensated strain measurement. Sensors and Actuators A: Physical. 2017.
Google Scholar
Majumder M., Gangopadhyay T.K., Chakraborty A.K., Dasgupta K., Bhattacharya D.K.: Fiber Bragg gratings in structural health monitoring–prezent status and applications. Sensors and Actuators 147, 2008, 150–164.
Google Scholar
Malo B., Hill K.O., Bilodeau, F., Johnson D.C., Albert J.: Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive-index modification techniques. Electron. Lett. 29, 1993, 1668–1669.
Google Scholar
Malo B., Theriault S., Johnson D.C., Bilodeau F., Albert J., Hill K.O.: Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask. Electron. Lett. 31, 1995, 223–224.
Google Scholar
Martinez A., Khrushchev I.Y., Bennion I.: Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett. 41, 2005, 176–178.
Google Scholar
Meltz G., Morey W.W., Glenn W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 1989, 823–825.
Google Scholar
Ouellette F., Krug P.A., Stephens T., Dhosi G., Eggleton B.J.: Dispersion compensation using chirped sampled fibre Bragg gratings. Electronics Lett. 31, 1995, 899–901.
Google Scholar
Prakash O., Kumar J., Mahakud R., Agrawal S.K., Dixit S.K., Nakhe S.V.: Enhanced Temperature (~800°C) Stability of Type-IIa FBG Written by 255 nm Beam. IEEE Photonics Technology Letters 26(1), 2014, 93–95.
Google Scholar
Putnam M.A., Williams G.M., Friebele E.J.: Fabrication of tapered, strain-gradient chirped fibre Bragg gratings. Electronics Letters 31.4, 1995, 309–310.
Google Scholar
Shi Ch.X.: Optical Bistability in Reflective Fiber Gratings. IEEE Journal of Quantum Electronics 31, 1995, 2037–2043.
Google Scholar
Takubo Y., Yamashita S.: High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Optics express 21(4), 2013, 5130–5139.
Google Scholar
Tanaka N., Okabe Y., Takeda N.: Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart materials and structures 12(6), 2003, 940.
Google Scholar
Williams R.J., Voigtländerv C., Marshall G.D., Tünnermann A., Nolte S., Steel M.J., Withford M.J.: Pointby-point inscription of apodized fiber Bragg gratings. Opt. Lett. 36(15), 2011, 2988–2990.
Google Scholar
Yoffe G.W., Krug P.A., Ouellette F., Thorncraft D.A.: Passive temperature-compensating package for optical fiber gratings. Applied Optics 34(30), 1995, 6859–6861.
Google Scholar
Zhu HH., Yin JH., Zhang L., Jin W., Dong JH.: Monitoring internal displacements of a model dam using FBG sensing bars. Advances in Structural Engineering 13(2), 2010, 249–262.
Google Scholar
Authors
Tomasz Zielińskitomasz.zielinski.1992@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology Poland
Authors
Piotr KisałaLublin University of Technology, Institute of Electronics and Information Technology Poland
Statistics
Abstract views: 231PDF downloads: 147
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Łukasz Zychowicz, Jacek Klimek, Piotr Kisała, METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Tomasz Zieliński, Łukasz Zychowicz, ANALISYS OF THE INFLUENCE OF GLUE JOINTS ON THE MEASUREMENT OF PHYSICAL PROPERTIES OF STRUCTURAL ELEMENTS USING FIBER BRAGG GRATING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Tomasz Zieliński, THE ANALYSIS OF SENSORY PLATFORM FOR USE IN THE INTERNET OF THINGS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 3 (2017)
- Damian Harasim, Piotr Kisała, INTERROGATION SYSTEMS FOR MULTIPLEXED FIBER BRAGG SENSORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 4 (2015)
- Piotr Kisała, Paweł Wiśniewski, NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)