SELECTED METHODS OF TEMPERATURE MEASUREMENTS OF PLASMA IN PLASMA JET REACTORS
Piotr Terebun
piotr.terebun@gmail.comPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Piotr Krupski
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Michał Kwiatkowski
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Radosław Samoń
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Jarosław Diatczyk
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Joanna Pawłat
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Henryka Stryczewska
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii (Poland)
Abstract
In plasma physics, the temperature is an extremely important parameter which determinates the type and energy of plasma particles, and thus their chemical and electrical properties. This is particularly important in biotechnology and medicine, where use of plasma jet reactor is limited by maximum permitted temperature of exhaust gas. The article presents selected methods of temperature measuring in non-equilibrium plasma produced in jet reactors. Due to the nature and purpose of measurement, as a particularly useful methods were described: thermocouple (the gas temperature), electrostatic probe (electron temperature) and spectroscopic methods (temperature excitation of atoms and ions).
Keywords:
non-equilibrium plasma, plasma jet, plasma temperatureReferences
Bobrowski Cz.: Fizyka – krótki kurs. WNT, Warszawa 1998.
Google Scholar
Celiński Z.: Plazma. PWN, Warszawa 1980.
Google Scholar
Diatczyk J., Stryczewska H. D., Komarzyniec G.: Modeling of the Temperature Distrbution in Arc Discharge Plasma Reactor, Journal of Advanced Oxidation Technologies, Vol. 9, no 2, July 31, 2006, 174–177.
Google Scholar
Jang H., Cho M. H., Namkung W., Lee J. M., Suk H., Hur M. S.: A method to measure the electron temperature and density of a laser-produced plasma by Raman scattering. Applied Physics Letters. 8/18/2008, Vol. 93, Issue 7.
Google Scholar
Kim J. Y., Kim S.-O., Ballato J.: Intense and Energetic Atmospheric Pressure Plasma Jet Arrays. Plasma Processes and Polymers, March 2012, 253–260.
Google Scholar
Kołaciński Z., Szymański Ł., Raniszewski G.: Arc Plasma for Materials Detoxification and their Conversion, Journal of Advanced Oxidation Technologies, Volume 13, Number 1, January 2010, 89–98.
Google Scholar
Knoerzer K., Murphy A., Fresewinkel M., Sanguansri P., Coventry J.: Evaluation of methods for determining food surface temperature in the presence of low-pressure cool plasma. Innovative Food Science and Emerging Technologies 15, 2012, 23–30.
Google Scholar
Mahmood S., Shaikh Nek M., Kalyar M. A., Rafiq M., Piracha N. K., Baig M. A.: Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma. Journal of Quantitative Spectroscopy and Radiative Transfer. 110 (17), 2009, 1840–1850.
Google Scholar
Miłek M.: Pomiary wielkości nieelektrycznych metodami elektrycznymi. Zielona Góra 1998.
Google Scholar
Pawłat J.: Atmospheric pressure plasma jet for decontamination purposes, Eur. Phys. J. Appl. Phys 61, 2013, 24323.
Google Scholar
Pawłat J.: Atmospheric pressure plasma jet for sterilization of heat sensitive surfaces, Przegląd Elektrotechniczny, 10b, 2012, 139–140.
Google Scholar
Pawłat J., Samoń R., Stryczewska H. D., Diatczyk J., Giżewski T.: RF-powered atmospheric pressure plasma jet for surface treatment, The European Physical Journal Applied Physics, 61, 2013, 24322.
Google Scholar
Pawlat J., Stryczewska H. D., Ebihara K.: Sterilization techniques for soil remediation and agriculture based on ozone and AOP, Journal of Advanced Oxidation Technologies 13 (2), 2010, 138–145.
Google Scholar
Stryczewska H. D.: Technologie plazmowe w energetyce i inżynierii środowiska. Wydawnictwo Politechniki Lubelskiej, Lublin 2009.
Google Scholar
Stryczewska H. D., Diatczyk J., Pawłat J.: Temperature distribution in the gliding arc discharge chamber, Journal of Advanced Oxidation Technologies, Volume 14, Number 2, July 2011, 276–281.
Google Scholar
Weltmann K. D., Kindel E., von Woedtke T., Hahnel M., Stieber M., Brandenburg R.: Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure and Applied Chemistry, 82 (6), 2010, 1223–1237.
Google Scholar
www.agligent.com
Google Scholar
Authors
Piotr Terebunpiotr.terebun@gmail.com
Politechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Piotr KrupskiPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Michał KwiatkowskiPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Radosław SamońPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Jarosław DiatczykPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Joanna PawłatPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Authors
Henryka StryczewskaPolitechnika Lubelska, Instytut Elektrotechniki i Elektrotechnologii Poland
Statistics
Abstract views: 235PDF downloads: 135
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Michał Kwiatkowski, Piotr Terebun, Piotr Krupski, Radosław Samoń, Jarosław Diatczyk, Joanna Pawłat, Henryka Danuta Stryczewska, PROPERTIES AND APPLICATIONS OF PLASMA NOZZLE REACTORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 4 No. 3 (2014)