MASSIVE SIMULATIONS USING MAPREDUCE MODEL

Artur Krupa

artur.krupa@ee.pw.edu.pl
Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych (Poland)

Bartosz Sawicki


Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych (Poland)

Abstract

In the last few years cloud computing is growing as a dominant solution for large scale numerical problems. It is based on MapReduce programming model, which provides high scalability and flexibility, but also optimizes costs of computing infrastructure. This paper studies feasibility of MapReduce model for scientific problems consisting of many independent simulations. Experiment based on variability analysis for simple electro­magnetic problem with over 10,000 scenarios proves that platform has nearly linear scalability with over 80% of theoretical maximum performance.


Keywords:

mapreduce, cloud computing, platform performance, hadoop

Barker A., Varghese B., Ward J. S., Sommerville I.: Academic Cloud Computing Research: Five Pitfalls and Five Opportunities, in 6th USENIX Workshop on Hot Topics in Cloud Computing, 2014.
  Google Scholar

Cunha A. Jr., Nasser R., Sampaio R., Lopes H., Breitman K., Uncertainty quantification through the Monte Carlo method in a cloud computing setting, vol. 185, 2014, 1355–1363.
  Google Scholar

D’Angelo G., Marzolla M.: New trends in parallel and distributed simulation: From many-cores to Cloud Computing, Simul. Model. Pract. Theory, 2014, 126.
  Google Scholar

Kim B. S., Lee S. J., Kim T. G.: MapReduce Based Experimental Frame for Parallel and Distributed Simulation Using Hadoop Platform, in Proceedings 28th European Conference on Modelling and Simulation, 2012.
  Google Scholar

Kondo D., Javadi B., Malecot P., Cappello F., Anderson D. P., Berkeley U. C., Cost-Benefit Analysis of Cloud Computing versus Desktop Grids, 2009.
  Google Scholar

Sakellari G., Loukas G., A survey of mathematical models, simulation approaches and testbeds used for research in cloud computing, Simul. Model. Pract. Theory, vol. 39, 2013, pp. 92103.
  Google Scholar

Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/, access date: [13.08.2015]
  Google Scholar

Apache Hadoop project, http://hadoop.apache.org, access date: [21.01.2015]
  Google Scholar

Google Cloud Platform Pricing, https://cloud.google.com/compute/pricing/, access date: [13.08.2015]
  Google Scholar

Microsoft Azure Pricing, https://azure.microsoft.com/en-gb/pricing/calculator/, access date: [13.08.2015]
  Google Scholar

Download


Published
2015-10-28

Cited by

Krupa, A., & Sawicki, B. (2015). MASSIVE SIMULATIONS USING MAPREDUCE MODEL. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(4), 45–47. https://doi.org/10.5604/20830157.1176574

Authors

Artur Krupa 
artur.krupa@ee.pw.edu.pl
Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych Poland

Authors

Bartosz Sawicki 

Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych Poland

Statistics

Abstract views: 167
PDF downloads: 42