TWO-MODULAR SYSTEM FOR PROCESSING EEG DATA USING FACTOR ANALYSIS AND MOORE-PENROSE PSEUDOINVERSION

Szczepan Paszkiel

s.paszkiel@po.opole.pl
Opole University of Technology (Poland)

Abstract

This paper describes the concept of obtaining the so-called. the output signal for the purpose, inter alia, the control processes carried out. To this end, proposed the construction of two-modular system for processing and analysis of electrophysiological data on the composition, which includes factor analysis and pseudoinversion Moore Penrose. In the article the problem of high interference sources of EEG signals, which has a negative impact on the process of obtaining the final output using automation or robotics. This implies also the problem of proper and correct identification of sources in the human brain.


Keywords:

two-modular system, Moore-Penrose pseudoinversion, factor analysis, EEG data

Accardo A., Affinito M., Carrozzi M., Bouquet F.: Use of the fractal dimension for the analysis of electroencephalographic time series, Biol. Cybern., vol. 77, 1997, 339-350.
  Google Scholar

Bakardjian H., Cichocki A., Cincotti F., Mattia D., Babiloni F., Grazia Marciani M., De Vico Fallani F., Miwakeichi F., Yamaguchi Y., Martinez P., Salinari S., Tocci A., Astolfi L.: Estimate of causality between cortical spatial patterns during voluntary movements in normal subjects, International Journal of Bioelectromagnetism 8 (1), II/1–II/18, 2006.
  Google Scholar

Bielińska E. et al.: Identyfikacja Procesów, Gliwice, Wydawnictwo Politechniki Śląskiej, 1997.
  Google Scholar

Cheung Y.M., Xu L.: Dual multivariate auto-regressive modeling in state space for temporal signal separation, IEEE T. Syst. Man. Cyb. 33 2003, 386-398.
  Google Scholar

Cichocki A., Zdunek R., Amari S.: Csiszar's divergences for non-negative matrix factorization: Family of new algorithms. LNCS 3889, Springer, 32-39.
  Google Scholar

Cichocki A., Zdunek R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-2006.
  Google Scholar

Cruces S., Cichocki A., Castedo L.: An iterative inversion approach to blind source separation. IEEE Trans. on Neural Networks, 11 (6), 2000, 1423-1437.
  Google Scholar

Cruces S.A., Castedo L., Cichocki A.: Robust blind source separation algorithms using cumulants. Neurocomputing, 49, 2002, 87-118.
  Google Scholar

David O., Friston K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (3), 2003, 1743-1755.
  Google Scholar

Dvorak I., Holden A.V.: Mathematical Approaches to Brain Functioning Diagnostics, Manchester Univ. Press, 1991.
  Google Scholar

Gomez-Herrero G., De Clercq W., Anwar H., Egiazarian K. Kara, Van Hu_e O.S., Van Paesschen W.: Automatic removal of ocular artifacts in the eeg without a reference eog channel, In Proc. NORSIG, Reykjavik, Iceland 2006, 130–133.
  Google Scholar

Hyvarinen A., Kashunen J., Oja E.: Independent Component Analysis, John Wiley & Sons, Ltd, UK. 2001.
  Google Scholar

Katsikis V.N., Pappas, D.: Fast computing of the Moore–Penrose inverse matrix, Electronic Journal of Linear Algebra 17(1), 2008, 637-650.
  Google Scholar

Lagerlund T.D., Sharbrough F.W., Busacker N.E.: Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition, J. Clin. Neurophysiol., vol. 14, 1997, 73-82.
  Google Scholar

Lee D.D., Seung H. S.: Learning of the parts of objects by non-negative matrix factorization. Nature, 401, 1999, 788-791.
  Google Scholar

Li Y., Cichocki A., Amari S.: Analysis of sparse representation and blind source separation. Neural Computation, 16 (6), 2004, 1193-1204.
  Google Scholar

Li Y., Cichocki A., Amari S.: Blind estimation of channel parameters and source components for EEG signals: A sparse factorization approach. IEEE Transactions on Neural Networks, 2006, 17, 419-431.
  Google Scholar

Li Y., Cichocki A., Amari S., Shishkin S., Cao J., Gu F.: Sparse representation and its applications in blind source separation. In Seventeenth Annual Conference on Neural Information Processing Systems (NIPS-2003). Vancouver.
  Google Scholar

Lin C.J.: Projected gradient methods for non-negative matrix factorization (Tech. Rep.) Department of Computer Science, National Taiwan University, 2005.
  Google Scholar

Petralias A., Katsikis V.N., Pappas D.: An improved method for the computation of the Moore–Penrose inverse matrix, Applied Mathematics and Computation 217(23) 2011, 9828-9834.
  Google Scholar

Paszkiel S.: Augmented reality of technological environment in correlation with brain computer interfaces for control processes, Advances in Intelligent Systems and Computing 267 - AISC, Springer Switzerland 2014, 197-203.
  Google Scholar

Paszkiel S.: The use of Brain Computer Interfaces in the control processes based on industrial PC in terms of the methods of EEG signal analysis, Journal of Medical Informatics & Technologies - Vol. 22 2013, 55-62.
  Google Scholar

Paszkiel S., Błachowicz A.: The application of electroencephalographic signals in the aspect of controlling a mobile robot for measurements of incomplete discharges, Przegląd Elektrotechniczny, R. 86 NR 8/2010, 303-306.
  Google Scholar

Paszkiel S.: The population modeling of neuronal cell fractions for the use of controlling a mobile robot. Pomiary, Automatyka, Robotyka, vol. 2, 2013, 254-259.
  Google Scholar


Published
2014-12-09

Cited by

Paszkiel, S. (2014). TWO-MODULAR SYSTEM FOR PROCESSING EEG DATA USING FACTOR ANALYSIS AND MOORE-PENROSE PSEUDOINVERSION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(4), 62–64. https://doi.org/10.5604/20830157.1130196

Authors

Szczepan Paszkiel 
s.paszkiel@po.opole.pl
Opole University of Technology Poland

Statistics

Abstract views: 201
PDF downloads: 57