Polyaniline (PANI) is a  potential  filler in polymer composites with antistatic properties. As an intrinsic conducting polymer, PANI may be an alternative for carbons and metals. It is lighter than metals and shows better chemical affinity to traditional polymers than carbon allotropes. After modification, it may be incorporated into the matrix and thus helps to avoid the accumulation of static electricity in insulating polymers. In this research, insulating epoxy resin was filled with chemically-modified polyaniline and compared with classical fillers. Measurements of resistivity, thermal analysis and SEM observations were also conducted.


conducting additives; polymer composites; electrical resistivity

Bekyarova E., Thostenson E.T., Yu A., Itkis M.E., Fakhrutdinov D., Chou T.-W., Haddon R.C.: Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber-Epoxy Composites. Journal of Physical Chemistry C 111/2007, 17865-17871.

Chen J., Chen Q., Ma Q.: Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. Journal of Colloid and Interface Science 370/2012, 32-38.

Jiang H., Moon K.S., Li Y., Wong C.P.: Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chemistry of Materials 18/2006, 2969-2973.

Kaiser A. B.: Systematic Conductivity Behavior in Conducting Polymers: Effect of Heterogeneous Disorder. Adv. Mater. 13/12-13/2001, 927-941.

Kim S.W., Kim T., Kim Y.S., Choi H.S., Lim H.J., Yang S.J., Park C.R.: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50/2012, 3-33.

Koul S., Chandra R., Dhawan S.K.: Conducting polyaniline composite for ESD and EMI at 101 GHz. Polymer 41/2000, 9305-9310.

Leon V., Parret R., Almairac R., Alvarez L., Babaa M.R., Doyle B.P., Ienny P., Parent P., Zahab A., Bantignies J.L.: Spectroscopic study of double-walled carbon nanotube functionalization for preparation of carbon nanotube/epoxy composites. Carbon 50/2012, 4987-4994.

Lilei Y., Zonghe L., Johan L., Tholen A.: Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing 22/1999, 299-302.

Ma P.C., Tang B.Z., Kim J.-K.: Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46/2008, 1497-1505.

Mai T.T., Schultze J.W., Staikov G.: Microstructured metallization of insulating polymers. Electrochimica Acta 48/2003, 3021-3027.

Maiti S., Suin S., Shrivastava N.K., Khatua B.: Low Percolation Threshold in Melt-Blended PC/MWCNT Nanocomposites in the Presence of Styrene Acrylonitrile (SAN) Copolymer: Preparation and Characterizations. Synthetic Metals 165/2013, 40-50.

Morgan H. Foot S., Brooks N.W.: The effects of composition and processing variables on the properties of thermoplastic polyaniline blends and composites. Journal of Material Science 36/2001, 5369-5377.

Moron L., Zawadzka E., Zych B.: Opracowanie założeń technologii wytwarzania półprzewodzących kompozytów polimerowych wypełnionych nanowypełniaczami węglowymi. Technical Documentation Nr 500/9390/26, IEL OTiME, Wrocław 2010.

Narkis M., Ram A., Flashner F.: Electrical properties of carbon black filled polyethylene. Polymer Engineering & Science 18/1978, 649-653.

Nishio K., Fujimoto M., Yoshinaga N.: Electrochemical characteristics of polyaniline synthesized by various methods. Journal of Power Sources 56/1995, 189-192.

Paściak G.: Opracowanie zmodyfikowanej technologii wytwarzania nanokompozytów epoksydowych z wykorzystaniem specjalistycznych urządzeń technologicznych i badawczych. Quarterly Report Wykorzystanie nanotechnologii w nowoczesnych materiałach, POIG 01.01.02-02-002/08, Wrocław 2014.

Ryabenko A., Fokeeva L., Dorofeeva V.: Spectroscopic study of suspensions of single-wall carbon nanotubes in polyaniline solutions in N-methylpyrrolidone in UV-Vis-NIR regions. Russian Chem. Bull, Int. Ed. 53/2004, 2695-2699.

Saito R., Dresselhaus G., Dresselhaus M. S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London 1998.

Velasco-Santos C., Martínez-Hernández A.L., Fisher F.T., Ruoff R., Castano V.M.: Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chemistry of Materials 15/2003, 4470-4475.

Wang Y., Zhang Ch., Du Z., Li H., Zou W.: Synthesis of silver nanoparticles decorated MWCNTs and their application in antistatic polyetherimide matrix nanocomposite. Synthetic Metals 182/2013, 49-55.

Yakobson B. I., Smalley R. E.: Fullerene nanotubes: C-1000000 and beyond. Am. Sci. 85/1997, 324.

Zawadzka E., Kulinski R., Szubzda B., Mazurek B.: Polyaniline–multi-walled carbon nanotube shell-core composite as an electrode material in supercapacitors. Materials Science-Poland 27/4/2/2009, 1271-1278.


Published : 2014-12-09

Kolasinska, E., & Mazurek, B. (2014). CHEMICALLY-MODIFIED POLYANILINE AS A NEW CONDUCTING FILLER FOR POLYMER COMPOSITES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(4), 94-97.

Ewa Kolasinska
Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw  Poland
Boleslaw Mazurek 
Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw  Poland