THE INFLUENCE OF THE TYPE OF SEPARATOR MATERIAL IN THE COMBINATION OF TWO BINARY STRUCTURES
Abstract
The paper presents a simulation method of multilayers transmission and examines the impact of changes in the type and thickness of the material separating the two multilayer structures. For the analysis, the matrix method were used. It has been shown significantly influence the implementation of the separation layer inhomogeneities on the transmission and significantly smaller of thickness inaccuracies implementation.
Keywords:
propagation, superlattice, metamaterials, optical filtersReferences
Abe E., Yan Y., Pennycook S. J.: Quasicrystals as cluster aggregates. Nature Materials 3, 2004, pp. 759–767.
Google Scholar
Albuquerque E. L., Cottam M. G.: Theory of elementary excitations in quasicrystals structures. Phys. Rep. 376, 2003, pp. 225–337.
Google Scholar
Bjarklev A., Broeng J., Bjarklev A. S.: Photonic Crystal Fibers. Kluwer Academic Publishers, Boston 2003.
Google Scholar
Bliokh K. Yu., Bliokh Yu. P.: What are the left-handed media and what is interesting about them. dostępne w EBP arXiv:physics/0408135, 2004.
Google Scholar
Born M., Wolf E.: Principles of Optics, Pergamon Press, London 1968.
Google Scholar
Briechowski L. M.: Wołny w słoistych sriedach, Nauka, Moskwa 1973.
Google Scholar
Cubukcu E., Aydin K., Ozbay E., Foteinopoulou S., Soukoulis C. M.: Electromagnetic waves: Negative refraction by photonic crystals, Nature 423, 2003, pp. 604–605.
Google Scholar
Cubukcu E., Aydin K., Ozbay E., Foteinopoulou S., Soukoulis C. M.: Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Phys. Rev. Lett. 91, 2003, 207401.
Google Scholar
DiVincenzo D. P., Steinhardt P. J. (ed.): Quasicrystals: The State of the Art. World Scientific. Singapore 1991.
Google Scholar
Esaki L., Tsu R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14, 1970, 61–65.
Google Scholar
Garus S., Duś-Sitek M., Zyzik E.: Wpływ domieszki żelaza na własności transmisyjne supersieci FexNi(1-x)/Cu. Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej. XII Międzynarodowa Konferencja Naukowa, cz. 2, Częstochowa 2011.
Google Scholar
Garus S., Garus J., Gruszka K.: Emulacja propagacji fali elektromagnetycznej w supersieciach przy użyciu algorytmu FDTD = Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja, Anna Kawałek. Chapter 2., Wydawnictwo WIPMiFS Politechniki Częstochowskiej, 2012, pp. 768-771.
Google Scholar
Gluck M., Kolovsky A. R., Korsch H. J.: Wannier-Stark resonances in optical and semiconductor superlattices. Phys. Rep. 366, 2002, pp. 103–182.
Google Scholar
Guyot P., Krammer P., de Boissieu M.: Quasicrystals, Rep.Prog. Phys., 54, 1991, pp. 1373–1425.
Google Scholar
Hu Ch., Wang R., Ding D.-H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 2002, pp. 1–39.
Google Scholar
Jacak L., Hawrylak P., Wójs A.: Quantum Dots. Springer-Verlag, Berlin Heidelberg New York 1998.
Google Scholar
Joannopoulos J. D., Meade R. D., Winn J. N.: Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore 1995.
Google Scholar
John S.: Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 1987, pp. 2486–2489.
Google Scholar
Johnson S. G., Joannopoulos J. D.: Photonic Crystals. The Road from Theory to Practice. Kluwer Academic Publishers, Boston 2002.
Google Scholar
Jurczyk M., Jakubowicz J.: Nanomateriały ceramiczne. Wyd. Politechniki Poznańskiej, Poznań 2004.
Google Scholar
Klauzer-Kruszyna A.: Propagacja światła spolaryzowanego w wybranych supersieciach aperiodycznych. Praca doktorska, Wrocław 2005.
Google Scholar
Kohler M., Fritzsche W.: Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim 2004.
Google Scholar
Krowne C. M., Zhang Y. (ed.): Physics of Negative Refraction and Negative Index Materials, Springer 2007.
Google Scholar
Levine D., Steinhardt P. J.: Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53, 1984, pp. 2477–2480.
Google Scholar
Levine D., Steinhardt P. J.: Quasicrystals. I. Definition and structure. Phys. Rev. B 34, 1986, pp. 596–616.
Google Scholar
Lockwood D. J., Pavesi L. (ed.): Silicon Photonics. Seria Applied Physics vol. 94, Springer-Verlag, Heidelberg 2004.
Google Scholar
Markos P., Soukoulis C. M.: Left-handed Materials, dostępne w EBP arXiv:condmat/0212136, 2002.
Google Scholar
Nalwa H. S. (ed.): Nanostructured Materials and Nanotechnology, Academic Press, New York 2002.
Google Scholar
Pokrovsky A. L., Efros A. L.: Sign of refractive index and group velocity in left-handed media. Solid St. Comm. 124, 2002, pp. 283–287.
Google Scholar
Poon S. J.: Electronic properties of quasicrystals. An experimental review. Adv. Phys. 41, 1992, 303.
Google Scholar
Ramakrishna S. A., Grzegorczyk T. M.: Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press 2009.
Google Scholar
Rostami A., Matloub S.: Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Opt. Comm. 247, 2005, pp. 247–256.
Google Scholar
Sakoda K.. Optical Properties of Photonic Crystals, Springer-Verlag, Berlin 2001.
Google Scholar
Shechmtan D. S., Blench I., Gratias D., Cahn J. W.: Metallic phase with long-ranged orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1984, pp. 1951–1953.
Google Scholar
Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S.: Composite Medium with Negative Permeability and Permittivity. Phys. Rev. Lett. 84, 2000, pp. 4184–4187.
Google Scholar
Steinhardt P. J., Ostlund S.: The Physics of Quasicrystals,World Scientific, Singapore 1987.
Google Scholar
Steurer W., Deloudi S.: Crystallography of Quasicrystals, Springer Series in Materials Science, tom 126, Springer Verlag, Berlin 2009.
Google Scholar
Sullivan D.M.: Electromagnetic simulation using the FDTD Method. IEEE Press 2000.
Google Scholar
Veselago V. G.: Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ. Usp. Fiz. Nauk 92, 1968, pp. 517–529.
Google Scholar
Wacker A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 2002, pp. 1–111.
Google Scholar
Wang Z. L., Liu Y., Zhang Z. (ed.): Handbook of nanophase and nanostructured materials, Vol. 1, Synthesis. Kluwer Academic/Plenum Publishers, New York 2003.
Google Scholar
Yablonovitch E.: Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 1987, pp. 2059–2062.
Google Scholar
Yablonovitch E.: Kryształy fotoniczne, półprzewodniki światła. Świat Nauki 126 (2), 2002, pp. 46–53.
Google Scholar
Yariv A., Yeh P.: Optical Waves in Crystals. Propagation and Control of Laser Radiation, John Wiley & Sons, New York 1984.
Google Scholar
Yeh P.: Optical Waves in Layered Media, John Wiley & Sons, New York 1988.
Google Scholar
Zhou X., Hu Ch., Gong P., Qiu Sh.: Nonlinear elastic properties of decagonal quasicrystals. Phys. Rev. B 70, 2004, pp. 94202–94206.
Google Scholar
Statistics
Abstract views: 148PDF downloads: 119
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.