THE INFLUENCE OF THE TYPE OF SEPARATOR MATERIAL IN THE COMBINATION OF TWO BINARY STRUCTURES

Michał Szota

mszota@wp.pl
Czestochowa University of Technology (Poland)

Abstract

The paper presents a simulation method of multilayers transmission and examines the impact of changes in the type and thickness of the material separating the two multilayer structures. For the analysis, the matrix method were used. It has been shown significantly influence the implementation of the separation layer inhomogeneities on the transmission and significantly smaller of thickness inaccuracies implementation.


Keywords:

propagation, superlattice, metamaterials, optical filters

Abe E., Yan Y., Pennycook S. J.: Quasicrystals as cluster aggregates. Nature Materials 3, 2004, pp. 759–767.
  Google Scholar

Albuquerque E. L., Cottam M. G.: Theory of elementary excitations in quasicrystals structures. Phys. Rep. 376, 2003, pp. 225–337.
  Google Scholar

Bjarklev A., Broeng J., Bjarklev A. S.: Photonic Crystal Fibers. Kluwer Academic Publishers, Boston 2003.
  Google Scholar

Bliokh K. Yu., Bliokh Yu. P.: What are the left-handed media and what is interesting about them. dostępne w EBP arXiv:physics/0408135, 2004.
  Google Scholar

Born M., Wolf E.: Principles of Optics, Pergamon Press, London 1968.
  Google Scholar

Briechowski L. M.: Wołny w słoistych sriedach, Nauka, Moskwa 1973.
  Google Scholar

Cubukcu E., Aydin K., Ozbay E., Foteinopoulou S., Soukoulis C. M.: Electromagnetic waves: Negative refraction by photonic crystals, Nature 423, 2003, pp. 604–605.
  Google Scholar

Cubukcu E., Aydin K., Ozbay E., Foteinopoulou S., Soukoulis C. M.: Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Phys. Rev. Lett. 91, 2003, 207401.
  Google Scholar

DiVincenzo D. P., Steinhardt P. J. (ed.): Quasicrystals: The State of the Art. World Scientific. Singapore 1991.
  Google Scholar

Esaki L., Tsu R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14, 1970, 61–65.
  Google Scholar

Garus S., Duś-Sitek M., Zyzik E.: Wpływ domieszki żelaza na własności transmisyjne supersieci FexNi(1-x)/Cu. Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej. XII Międzynarodowa Konferencja Naukowa, cz. 2, Częstochowa 2011.
  Google Scholar

Garus S., Garus J., Gruszka K.: Emulacja propagacji fali elektromagnetycznej w supersieciach przy użyciu algorytmu FDTD = Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja, Anna Kawałek. Chapter 2., Wydawnictwo WIPMiFS Politechniki Częstochowskiej, 2012, pp. 768-771.
  Google Scholar

Gluck M., Kolovsky A. R., Korsch H. J.: Wannier-Stark resonances in optical and semiconductor superlattices. Phys. Rep. 366, 2002, pp. 103–182.
  Google Scholar

Guyot P., Krammer P., de Boissieu M.: Quasicrystals, Rep.Prog. Phys., 54, 1991, pp. 1373–1425.
  Google Scholar

Hu Ch., Wang R., Ding D.-H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 2002, pp. 1–39.
  Google Scholar

Jacak L., Hawrylak P., Wójs A.: Quantum Dots. Springer-Verlag, Berlin Heidelberg New York 1998.
  Google Scholar

Joannopoulos J. D., Meade R. D., Winn J. N.: Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore 1995.
  Google Scholar

John S.: Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 1987, pp. 2486–2489.
  Google Scholar

Johnson S. G., Joannopoulos J. D.: Photonic Crystals. The Road from Theory to Practice. Kluwer Academic Publishers, Boston 2002.
  Google Scholar

Jurczyk M., Jakubowicz J.: Nanomateriały ceramiczne. Wyd. Politechniki Poznańskiej, Poznań 2004.
  Google Scholar

Klauzer-Kruszyna A.: Propagacja światła spolaryzowanego w wybranych supersieciach aperiodycznych. Praca doktorska, Wrocław 2005.
  Google Scholar

Kohler M., Fritzsche W.: Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim 2004.
  Google Scholar

Krowne C. M., Zhang Y. (ed.): Physics of Negative Refraction and Negative Index Materials, Springer 2007.
  Google Scholar

Levine D., Steinhardt P. J.: Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53, 1984, pp. 2477–2480.
  Google Scholar

Levine D., Steinhardt P. J.: Quasicrystals. I. Definition and structure. Phys. Rev. B 34, 1986, pp. 596–616.
  Google Scholar

Lockwood D. J., Pavesi L. (ed.): Silicon Photonics. Seria Applied Physics vol. 94, Springer-Verlag, Heidelberg 2004.
  Google Scholar

Markos P., Soukoulis C. M.: Left-handed Materials, dostępne w EBP arXiv:condmat/0212136, 2002.
  Google Scholar

Nalwa H. S. (ed.): Nanostructured Materials and Nanotechnology, Academic Press, New York 2002.
  Google Scholar

Pokrovsky A. L., Efros A. L.: Sign of refractive index and group velocity in left-handed media. Solid St. Comm. 124, 2002, pp. 283–287.
  Google Scholar

Poon S. J.: Electronic properties of quasicrystals. An experimental review. Adv. Phys. 41, 1992, 303.
  Google Scholar

Ramakrishna S. A., Grzegorczyk T. M.: Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press 2009.
  Google Scholar

Rostami A., Matloub S.: Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Opt. Comm. 247, 2005, pp. 247–256.
  Google Scholar

Sakoda K.. Optical Properties of Photonic Crystals, Springer-Verlag, Berlin 2001.
  Google Scholar

Shechmtan D. S., Blench I., Gratias D., Cahn J. W.: Metallic phase with long-ranged orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1984, pp. 1951–1953.
  Google Scholar

Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S.: Composite Medium with Negative Permeability and Permittivity. Phys. Rev. Lett. 84, 2000, pp. 4184–4187.
  Google Scholar

Steinhardt P. J., Ostlund S.: The Physics of Quasicrystals,World Scientific, Singapore 1987.
  Google Scholar

Steurer W., Deloudi S.: Crystallography of Quasicrystals, Springer Series in Materials Science, tom 126, Springer Verlag, Berlin 2009.
  Google Scholar

Sullivan D.M.: Electromagnetic simulation using the FDTD Method. IEEE Press 2000.
  Google Scholar

Veselago V. G.: Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ. Usp. Fiz. Nauk 92, 1968, pp. 517–529.
  Google Scholar

Wacker A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 2002, pp. 1–111.
  Google Scholar

Wang Z. L., Liu Y., Zhang Z. (ed.): Handbook of nanophase and nanostructured materials, Vol. 1, Synthesis. Kluwer Academic/Plenum Publishers, New York 2003.
  Google Scholar

Yablonovitch E.: Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 1987, pp. 2059–2062.
  Google Scholar

Yablonovitch E.: Kryształy fotoniczne, półprzewodniki światła. Świat Nauki 126 (2), 2002, pp. 46–53.
  Google Scholar

Yariv A., Yeh P.: Optical Waves in Crystals. Propagation and Control of Laser Radiation, John Wiley & Sons, New York 1984.
  Google Scholar

Yeh P.: Optical Waves in Layered Media, John Wiley & Sons, New York 1988.
  Google Scholar

Zhou X., Hu Ch., Gong P., Qiu Sh.: Nonlinear elastic properties of decagonal quasicrystals. Phys. Rev. B 70, 2004, pp. 94202–94206.
  Google Scholar


Published
2014-09-26

Cited by

Szota, M. (2014). THE INFLUENCE OF THE TYPE OF SEPARATOR MATERIAL IN THE COMBINATION OF TWO BINARY STRUCTURES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(3), 23–26. https://doi.org/10.5604/20830157.1121338

Authors

Michał Szota 
mszota@wp.pl
Czestochowa University of Technology Poland

Statistics

Abstract views: 152
PDF downloads: 120