ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS

Viktor Kifer


Ternopil Ivan Puluj National Technical University (Ukraine)
http://orcid.org/0000-0002-0621-9121

Natalia Zagorodna

zagorodna.n@gmail.com
Ternopil Ivan Puluj National Technical University (Ukraine)
http://orcid.org/0000-0002-1808-835X

Olena Hevko


Ternopil Ivan Puluj National Technical University (Ukraine)
http://orcid.org/0000-0003-1427-1699

Abstract

In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 0.71 in classifying normal sinus rhythm, AF and other rhythms respectively.


Keywords:

electrocardiography, machine learning, neural networks

AliveCor ECG recording device. https://www.alivecor.com
  Google Scholar

Clifford G, Liu C, Moody B, Silva I, Li Q, Johnson A, Mark. R.: AF classification from a short single lead ECG recording: the PhysioNet Computing in Cardiology challenge 2017. Computing in Cardiology 44, 2017, [DOI: 10.22489/CinC.2017.065-469].
DOI: https://doi.org/10.22489/CinC.2017.065-469   Google Scholar

Dilaveris P. E., Kennedy H. L.: Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact. Clinical Cardiology 40(6), 413–418, 2017.
DOI: https://doi.org/10.1002/clc.22667   Google Scholar

Hernandez J., Carrasco-Ochoa J. A., Martínez-Trinidad J. F.: An Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets. In: Ruiz-Shulcloper J., Sanniti di Baja G. (eds): Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg 2013, [DOI: 10.1007/978-3-642-41822-8_33]
DOI: https://doi.org/10.1007/978-3-642-41822-8_33   Google Scholar

Himanshu S., Kumar J. S. J, Ashok V., Juliet A. V.: Advanced ECG Signal Processing using Virtual Instrument. International Journal on Recent Trends in Engineering & Technology 3(2), 2010, 111-114.
  Google Scholar

Huang J., Chen B., Yao B., He W. ECG Arrhythmia Classification Using STFT-based Spectrogram and Convolutional Neural Network. EEE Access 7, 2019, 92871-92880.
DOI: https://doi.org/10.1109/ACCESS.2019.2928017   Google Scholar

Kohler B.-U., Hennig C., Orglmeister R.: The principles of software QRS Detection. IEEE Engineering in Medicine and Biology Magazine 21(1), 2002, 42-57, [DOI: 10.1109/51.993193].
DOI: https://doi.org/10.1109/51.993193   Google Scholar

Mikhled A., Daqrouq K.: ECG Signal Denoising by Wavelet Transform Thresholding. American Journal of Applied Sciences 5(3), 2008. 276-281.
DOI: https://doi.org/10.3844/ajassp.2008.276.281   Google Scholar

Park J., Lee S., Jeon M.: Atrial fibrillation detection by heart rate variability in Poincare plot. Biomed engineering online 8/38, 2009, 1-12.
DOI: https://doi.org/10.1186/1475-925X-8-38   Google Scholar

Petrenas A., Marozas V.: Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput in Biology and Medicine 65, 2015, 184-191.
DOI: https://doi.org/10.1016/j.compbiomed.2015.01.019   Google Scholar

Rodenas-Garcia J., Garica M., Alcaraz R., Rieta J.: Wavelet Entropy Automatically Detects Episodes of Atrial Fibrillation from Single-Lead Electrocardiograms. Entropy 17, 2015, 6179-6199, [DOI: 10.3390/e17096179].
DOI: https://doi.org/10.3390/e17096179   Google Scholar

Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. Inter Conf on Learning Representations (ICLR), 2015. [arXiv preprint arXiv:1409.1556].
  Google Scholar

Tziakouri M., Pitris C., Orphanidou C.: Classification of AF and Other Arrhythmias from a Short Segment of ECG Using Dynamic Time Warping. Comp in Cardio, 2017, 1-4.
DOI: https://doi.org/10.22489/CinC.2017.348-295   Google Scholar

Velayudhan A., Peter S.: Noise Analysis and Different Denoising Techniques of ECG Signal – A Survey. IOSR Journal of Electronics and Communication Engineering, 2016, 40-44
  Google Scholar

Wang Z., Wan F., Wong C.M., Zhang L.: Adaptive Fourier decomposition based ECG denoising. Computers in Biology and Medicine 77, 2016, 195–205.
DOI: https://doi.org/10.1016/j.compbiomed.2016.08.013   Google Scholar

https://keras.io Keras documentation (available: 19.07.2019).
  Google Scholar

https://numpy.org NumPy official documentation (available 01.07.2019).
  Google Scholar

https://scikit-learn.org Scikit-Learn official website (available: 01.07.2019).
  Google Scholar

https://www.python.org Python programming language (available 30.06.2019).
  Google Scholar

https://www.scipy.org SciPy official documentation (available 01.07.2019).
  Google Scholar

https://www.tensorflow.org Tensorflow official page (available: 19.07.2019).
  Google Scholar

OMRON HCG801 HearnScan ECG recorder. https://www.omron-healthcare.com/en/products/electrocardiograph
  Google Scholar

WIWE ECG recording device. https://shop.mywiwe.com/en/ecg-recording-105
  Google Scholar

Download


Published
2019-12-15

Cited by

Kifer, V., Zagorodna, N., & Hevko, O. (2019). ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 69–73. https://doi.org/10.35784/iapgos.116

Authors

Viktor Kifer 

Ternopil Ivan Puluj National Technical University Ukraine
http://orcid.org/0000-0002-0621-9121

Authors

Natalia Zagorodna 
zagorodna.n@gmail.com
Ternopil Ivan Puluj National Technical University Ukraine
http://orcid.org/0000-0002-1808-835X

Authors

Olena Hevko 

Ternopil Ivan Puluj National Technical University Ukraine
http://orcid.org/0000-0003-1427-1699

Statistics

Abstract views: 570
PDF downloads: 243