ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS


Abstract

In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 0.71 in classifying normal sinus rhythm, AF and other rhythms respectively.


Keywords

electrocardiography; machine learning; neural networks

AliveCor ECG recording device. https://www.alivecor.com

Clifford G, Liu C, Moody B, Silva I, Li Q, Johnson A, Mark. R.: AF classification from a short single lead ECG recording: the PhysioNet Computing in Cardiology challenge 2017. Computing in Cardiology 44, 2017, [DOI: 10.22489/CinC.2017.065-469]. DOI: https://doi.org/10.22489/CinC.2017.065-469

Dilaveris P. E., Kennedy H. L.: Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact. Clinical Cardiology 40(6), 413–418, 2017. DOI: https://doi.org/10.1002/clc.22667

Hernandez J., Carrasco-Ochoa J. A., Martínez-Trinidad J. F.: An Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets. In: Ruiz-Shulcloper J., Sanniti di Baja G. (eds): Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg 2013, [DOI: 10.1007/978-3-642-41822-8_33] DOI: https://doi.org/10.1007/978-3-642-41822-8_33

Himanshu S., Kumar J. S. J, Ashok V., Juliet A. V.: Advanced ECG Signal Processing using Virtual Instrument. International Journal on Recent Trends in Engineering & Technology 3(2), 2010, 111-114.

Huang J., Chen B., Yao B., He W. ECG Arrhythmia Classification Using STFT-based Spectrogram and Convolutional Neural Network. EEE Access 7, 2019, 92871-92880. DOI: https://doi.org/10.1109/ACCESS.2019.2928017

Kohler B.-U., Hennig C., Orglmeister R.: The principles of software QRS Detection. IEEE Engineering in Medicine and Biology Magazine 21(1), 2002, 42-57, [DOI: 10.1109/51.993193]. DOI: https://doi.org/10.1109/51.993193

Mikhled A., Daqrouq K.: ECG Signal Denoising by Wavelet Transform Thresholding. American Journal of Applied Sciences 5(3), 2008. 276-281. DOI: https://doi.org/10.3844/ajassp.2008.276.281

Park J., Lee S., Jeon M.: Atrial fibrillation detection by heart rate variability in Poincare plot. Biomed engineering online 8/38, 2009, 1-12. DOI: https://doi.org/10.1186/1475-925X-8-38

Petrenas A., Marozas V.: Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput in Biology and Medicine 65, 2015, 184-191. DOI: https://doi.org/10.1016/j.compbiomed.2015.01.019

Rodenas-Garcia J., Garica M., Alcaraz R., Rieta J.: Wavelet Entropy Automatically Detects Episodes of Atrial Fibrillation from Single-Lead Electrocardiograms. Entropy 17, 2015, 6179-6199, [DOI: 10.3390/e17096179]. DOI: https://doi.org/10.3390/e17096179

Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. Inter Conf on Learning Representations (ICLR), 2015. [arXiv preprint arXiv:1409.1556].

Tziakouri M., Pitris C., Orphanidou C.: Classification of AF and Other Arrhythmias from a Short Segment of ECG Using Dynamic Time Warping. Comp in Cardio, 2017, 1-4. DOI: https://doi.org/10.22489/CinC.2017.348-295

Velayudhan A., Peter S.: Noise Analysis and Different Denoising Techniques of ECG Signal – A Survey. IOSR Journal of Electronics and Communication Engineering, 2016, 40-44

Wang Z., Wan F., Wong C.M., Zhang L.: Adaptive Fourier decomposition based ECG denoising. Computers in Biology and Medicine 77, 2016, 195–205. DOI: https://doi.org/10.1016/j.compbiomed.2016.08.013

https://keras.io Keras documentation (available: 19.07.2019).

https://numpy.org NumPy official documentation (available 01.07.2019).

https://scikit-learn.org Scikit-Learn official website (available: 01.07.2019).

https://www.python.org Python programming language (available 30.06.2019).

https://www.scipy.org SciPy official documentation (available 01.07.2019).

https://www.tensorflow.org Tensorflow official page (available: 19.07.2019).

OMRON HCG801 HearnScan ECG recorder. https://www.omron-healthcare.com/en/products/electrocardiograph

WIWE ECG recording device. https://shop.mywiwe.com/en/ecg-recording-105

Download

Published : 2019-12-15


Kifer, V., Zagorodna, N., & Hevko, O. (2019). ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 69-73. https://doi.org/10.35784/iapgos.116

Viktor Kifer 
Ternopil Ivan Puluj National Technical University  Ukraine
http://orcid.org/0000-0002-0621-9121
Natalia Zagorodna  zagorodna.n@gmail.com
Ternopil Ivan Puluj National Technical University  Ukraine
http://orcid.org/0000-0002-1808-835X
Olena Hevko 
Ternopil Ivan Puluj National Technical University  Ukraine
http://orcid.org/0000-0003-1427-1699