TEMPERATURE DISTRIBUTION INSIDE CVD REACTOR AND ITS INFLUENCE AT CARBON NANOCONTAINERS SYNTHESIS PROCESS

Łukasz Pietrzak

lukasz.pietrzak@p.lodz.pl
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych (Poland)

Łukasz Wąs


Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych (Poland)

Marcin Wyczechowski


Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych (Poland)

Abstract

Carbon nanotubes has tremendous properties, therefore possible application range is very wide, e.g. in hyperthermia process (after ferromagnetic material filling). This article presents iron filled multi-walled carbon nanotubes (Fe-MWCNTs) synthesis technique leading to production of high purity, high iron content nanocontainers. One of the most important synthesis parameters is temperature and it has been chosen as a main estimation of process efficiency. Also characterization of obtained material is presented.


Keywords:

carbon nanotubes, synthesis, ferromagnetic materials, nanomaterials, finite element method

Filleter T., Bernal R., Li S., Espinosa H.D.: Ultrahigh Strength and Stiffness in Cross-Linked Hierarchical Carbon Nanotube Bundles, Advanced Materials 23 (25), 2011, 2855–2860 [doi: 10.1002/adma.201100547].
  Google Scholar

Hafner J.H., Bronikowski M.J., Azamian B.R., Nikolaev P., Rinzler A.G., Colbert D.T., Smith K.A., Smalley R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296, 1998, 195–202.
  Google Scholar

de Heer W.A., Chatelain A., Ugarte D.: A carbon nanotube field-emission electron source, Science 270, 1995, 1179–1180.
  Google Scholar

Hong S., Myung S.: Nanotube Electronics: A flexible approach to mobility. Nature Nanotechnology 2 (4), 2007, 207–208 [doi: 10.1038/nnano.2007.89].
  Google Scholar

Iijima S.: Helical microtubules of graphitic carbon, Nature 354, 1991, 56–58, [doi: 10.1038/354056a0].
  Google Scholar

Jeszka J.K., Pietrzak L.: Polylactide/Multiwalled Carbon Nanotube Composites – Synthesis and Electrical Properties. Polimery, 55(7-8), 2010, 524–528.
  Google Scholar

Thostenson E., Chunyu Li, Tsu-Wei Chou: Nanocomposites in context, Composites Science and Technology, 65(3–4), 2005, 491–516, [doi: 10.1016/j.compscitech.2004.11.003].
  Google Scholar

Yue-Ying Fan, Kaufmann A., Mukasyan A., Varma A.: Single- and multi-wall carbon nanotubes produced using the floating catalyst method: Synthesis, purification and hydrogen up-take, Carbon 11, 2006, 2160–2170 [doi: 10.1016/j.carbon.2006.03.009].
  Google Scholar


Published
2016-08-08

Cited by

Pietrzak, Łukasz ., Wąs, Łukasz, & Wyczechowski, M. . (2016). TEMPERATURE DISTRIBUTION INSIDE CVD REACTOR AND ITS INFLUENCE AT CARBON NANOCONTAINERS SYNTHESIS PROCESS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 6(3), 56–59. https://doi.org/10.5604/20830157.1212269

Authors

Łukasz Pietrzak 
lukasz.pietrzak@p.lodz.pl
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych Poland

Authors

Łukasz Wąs 

Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych Poland

Authors

Marcin Wyczechowski 

Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Instytut Mechatroniki i Systemów Informatycznych Poland

Statistics

Abstract views: 143
PDF downloads: 82