APPLICATION OF FUZZY COGNITIVE MAP TO PREDICT OF EFFECTIVENESS OF BIKE SHARING SYSTEMS
Aleksander Jastriebow
a.jastriebow@tu.kielce.plPolitechnika Świętokrzyska, Katedra Systemów Informatycznych (Poland)
Łukasz Kubuś
Politechnika Świętokrzyska, Katedra Systemów Informatycznych (Poland)
Katarzyna Poczęta
Politechnika Świętokrzyska, Katedra Systemów Informatycznych (Poland)
Abstract
This paper proposes application of fuzzy cognitive map with evolutionary learning algorithms to model a system for prediction of effectiveness of bike sharing systems. Fuzzy cognitive map was constructed based on historical data and next used to forecast the number of cyclists and customers of bike sharing systems on three consecutive days. The learning process was realized with the use of Individually Directional Evolutionary Algorithm IDEA and Real-Coded Genetic Algorithm RCGA. Simulation analysis of the system for prediction of effectiveness of bike sharing systems was carried out with the use of software developed in JAVA.
Keywords:
fuzzy cognitive map, predictive model, evolutionary computation, machine learningReferences
Acampora G., Pedrycz W., Vitiello A.: A Competent Memetic Algorithm for Learning Fuzzy Cognitive Maps. IEEE Transactions on Fuzzy Systems 23(6)/2015, 2397–2411.
Google Scholar
Ahmadi S., Alizadeh S., Forouzideh N., Yeh C., Martin R. L., Papageorgiou E.: ICLA: Imperialist Competitive Learning Algorithm for Fuzzy Cognitive Map. Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014.
Google Scholar
Arabas J.: Wykłady z algorytmów ewolucyjnych, WNT, Warszawa 2001.
Google Scholar
Berry A., Vamplew P.: PoD Can Mutate: A Simple Dynamic Directed Mutation Approach for Genetic Algorithms. Proceedings of AISAT 2004: The 2nd International Conference on Artificial Intelligence in Science and Technology, 2004, 200–205.
Google Scholar
Fanaee-T H., Gama J.: Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, Springer Berlin Heidelberg, 2013, 1–15.
Google Scholar
Froelich W., Papageorgiou E.: Extended Evolutionary Learning of Fuzzy Cognitive Maps for the Prediction of Multivariate Time-Series. Papageorgiou E.I.: Fuzzy Cognitive maps for Applied Sciences and Engineering From fundamentals to extensions and learning algorithms. Intelligent Systems Reference Library 54/2014, 121–131.
Google Scholar
Goldberg D. E.: Algorytmy genetyczne i ich zastosowania. WNT, Warszawa 1995.
Google Scholar
Homenda W., Jastrzebska A., Pedrycz W.: Modeling Time Series with Fuzzy Cognitive Maps. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014, 2055–2062.
Google Scholar
Jastriebow A., Kubuś Ł., Poczęta K.: Learning fuzzy cognitive maps using Individually Directional Evolutionary Algorithm. In: Jastriebow A., Worwa K.: Applications of information technologies - theory and practice. Institute for Sustainable Technologies – National Research Institute, Radom 2015, 37–48.
Google Scholar
Korejo I., Yang S., Li C.: A Directed Mutation Operator for Real Coded Genetic Algorithms. Applications of Evolutionary Computation 6024/2010, 491–500.
Google Scholar
Kosko B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies 24(1)/1986, 65–75.
Google Scholar
Kubuś Ł.: Individually Directional Evolutionary Algorithm for Solving Global Optimization Problems - Comparative Study, International Journal of Intelligent Systems and Applications (IJISA) 7(9)/2015, 12–19.
Google Scholar
Michalewicz Z.: Algorytmy genetyczne + struktury danych = programy ewolucyjne. WNT, Warszawa 1999.
Google Scholar
Papageorgiou E. I.: Learning Algorithms for Fuzzy Cognitive Maps - A Review Study. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews 42(2)/2012, 150–163.
Google Scholar
Poczęta K., Yastrebov A.: Analysis of Fuzzy Cognitive Maps with Multi-Step Learning Algorithms in Valuation of Owner-Occupied Homes. 2014 IEEE International Conference on Fuzzy Systems (FUZZIEEE), Beijing, China 2014, 1029–1035.
Google Scholar
Poczęta K., A. YastrebovA., Papageorgiou E. I.: Learning Fuzzy Cognitive Maps using Structure Optimization Genetic Algorithm. 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 2015, 547–554.
Google Scholar
Song H., Miao C., Roel W., Shen Z.: Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series. IEEE Transactions on Fuzzy Systems 18(2)/2010, 233–250.
Google Scholar
Stach W., Kurgan L., Pedrycz W., Reformat M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems 153(3)/2005, 371–401.
Google Scholar
Stach W., Pedrycz W., Kurgan L. A.: Learning of fuzzy cognitive maps using density estimate. IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 42(3)/2012, 900–912.
Google Scholar
Tang P., Tseng M.: Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Computing 13(1)/2013, 600–614.
Google Scholar
Yesil E., Urbas L.: Big bang: big crunch learning method for fuzzy cognitive maps. World Acad. Sci. Eng. Technol. 71/2010, 815–8124.
Google Scholar
Authors
Aleksander Jastriebowa.jastriebow@tu.kielce.pl
Politechnika Świętokrzyska, Katedra Systemów Informatycznych Poland
Authors
Łukasz KubuśPolitechnika Świętokrzyska, Katedra Systemów Informatycznych Poland
Authors
Katarzyna PoczętaPolitechnika Świętokrzyska, Katedra Systemów Informatycznych Poland
Statistics
Abstract views: 188PDF downloads: 90
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Aleksander Jastriebow, Łukasz Kubuś, Katarzyna Poczęta, FUZZY COGNITIVE MAP AS AN INTELLIGENT RECOMMENDER SYSTEM OF WEBSITE RESOURCES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)