FUZZY COGNITIVE MAP AS AN INTELLIGENT RECOMMENDER SYSTEM OF WEBSITE RESOURCES
Article Sidebar
Open full text
Issue Vol. 7 No. 4 (2017)
-
SELECTED PROBLEMS OF EVALUATION AND CLASSIFICATION OF HISTORICAL BUILDINGS USING ROUGH SETS
Krzysztof Czajkowski5-10
-
LABORATORY STAND FOR SMALL WIND TURBINE SIMULATION
Wojciech Matelski, Eugeniusz Łowiec, Stanisław Abramik11-14
-
DEVELOPMENT OF AN AUTOMATED DIAGNOSTICS AND CONTROL SYSTEM FOR BIOGAS COMBUSTION PROCESSES
Oxana Zhirnova15-19
-
SUPPLY CHAIN RISK MANAGEMENT BY MONTE CARLO METHOD
Tomasz Rymarczyk, Grzegorz Kłosowski20-23
-
THE USE OF PETRI NETS IN DECISION SUPPORT SYSTEMS BASED ON INTELLIGENT MULTIPLY SOURCE DATA ANALYSIS
Tomasz Rymarczyk, Grzegorz Kłosowski, Tomasz Cieplak24-27
-
APPLICABILITY ANALYSIS OF REST AND SOAP WEB SERVICES
Tomasz Zientarski, Marek Miłosz, Marek Kamiński, Maciej Kołodziej28-31
-
A REVIEW OF CONTROL METHODS OF WIND TURBINE SYSTEMS WITH PERMANENT MAGNET SYNCHRONOUS GENERATOR
Piotr Gajewski32-37
-
DIRECT TORQUE CONTROL OF MULTI-PHASE INDUCTION MOTOR WITH FUZZY LOGIC SPEED CONTROLLER
Jacek Listwan38-43
-
IMAGE COMPLETION WITH LOW-RANK MODEL APPROXIMATION METHODS
Tomasz Sadowski, Rafał Zdunek44-48
-
APPROXIMATION OF ELECTRIC PROPERTIES OF PERIODIC LAYERED COMPOSITE MATERIALS
Adam Steckiewicz, Bogusław Butryło49-52
-
BOOST QUASI-RESONANT CONVERTERS FOR PHOTOVOLTAIC SYSTEM
Michał Harasimczuk53-56
-
RESEARCH OF FLOW AROUND SELECTED SENSORS PROFILES FOR METROLOGY FLOWS
Piotr Zgolak57-61
-
MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA
Tomasz Rojek62-65
-
ANALYSIS OF POWER LOSS IN THE LOW-SPEED PNEUMATIC ENGINE
Adam Ilnicki, Mariusz Rząsa66-69
-
APPLICATION OF FUZZY COGNITIVE MAP TO PREDICT OF EFFECTIVENESS OF BIKE SHARING SYSTEMS
Aleksander Jastriebow, Łukasz Kubuś, Katarzyna Poczęta70-73
-
FUZZY COGNITIVE MAP AS AN INTELLIGENT RECOMMENDER SYSTEM OF WEBSITE RESOURCES
Aleksander Jastriebow, Łukasz Kubuś, Katarzyna Poczęta74-78
-
MODELING OF THE ARTIFICIAL BLOOD CHAMBER AND THE MICROPUMPS PULSATILE DRIVE FOR BLOOD TRANSFUSION
Sebastian Bartel79-81
-
CONTROL A SMALL WIND TURBINE WITH ASYNCHRONOUS GENERATOR
Kamil Możdżyński, Tomasz Gajowik, Krzysztof Rafał, Mariusz Malinowski82-87
-
MECHANICAL PROPERTIES OF SELECTED EPOXY ADHESIVES
Izabela Miturska, Anna Rudawska88-91
-
POLYNOMIAL APPROXIMATION FOR T WAVE PARAMETER RECOGNITION IN ECG PROCESSING
Marcin Maciejewski92-95
-
THE IMPACT OF WINDOW FUNCTION ON IDENTIFICATION OF SPEAKER EMOTIONAL STATE
Paweł Powroźnik, Dariusz Czerwiński96-100
-
USE OF MULTICRITERIAL OPTIMIZATION IN FURNITURE MANUFACTURING PROCESS
Grzegorz Kłosowski, Edward Kozłowski101-106
-
MODEL OF DYNAMIC ELEVATOR CONTROL SYSTEM USING CENTRAL APPLICATION SERVER
Łukasz Furgała, Krzysztof Kolano, Włodzimierz Mosorow107-112
Archives
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
Main Article Content
DOI
Authors
Abstract
This paper is devoted to the construction and analysis of the intelligent recommendation system for website resources based on fuzzy cognitive map. The developed system allows to identify resources, which may be interested in a potential user. These resources are determined on the basis of website users activity. Fuzzy cognitive map was develop using the dataset with anonymous collected historical data. The concepts of fuzzy cognitive map are identifiers of resources of website. Weights of the connection between them have been established based on the number of users visiting the resources.
Keywords:
References
Ahmadi S., Alizadeh S., Forouzideh N., Yeh C., Martin R. L., Papageorgiou E.: ICLA: Imperialist Competitive Learning Algorithm for Fuzzy Cognitive Map. Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014.
Axelrod R.: Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, Princeton, New York 1976.
Froelich W., Juszczuk P.: Predictive Capabilities of Adaptive and Evolutionary Fuzzy Cognitive Maps – A Comparative Study. Nguyen N.T., Szczerbicki E. (eds.): Intel. Sys. for Know. Management, SCI 252, Springer-Verlag, Heidelberg 2009, 153–174.
Froelich W., Papageorgiou E.I.: Extended Evolutionary Learning of Fuzzy Cognitive Maps for the Prediction of Multivariate Time-Series. Papageorgiou E.I.: Fuzzy Cognitive maps for Applied Sciences and Engineering – From fundamentals to extensions and learning algorithms. Springer, Intelligent Systems Reference Library 54, 2014, 121–131.
Kannappan A., Papageorgiou E.: A new classification scheme using artificial immune systems learning for fuzzy cognitive mapping. Fuzzy Systems (FUZZ), 2013 IEEE International Conference, 2013, 1–8.
Kosko B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies 24(1)/1986, 65–75.
Lee K.C., Lee W.J., Kwon O.B., Han J.H., Yu P.I.: Strategic planning simulation based on fuzzy cognitive map knowledge and differential game. Simulation 71(5)/1998, 316–327.
Kubuś Ł, Poczęta K.: Learning Fuzzy Cognitive Maps using Evolutionary Algorithms – a comparative study. Transcom Proceedings 2015 section 3, 9–14.
Papageorgiou E.I., Parsopoulos K.E., Stylios C.S., Groumpos P.P., Vrahtis M.N.: Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization. Journal of Intelligent Information Systems 25(1)/2005, 95–121.
Poczęta K., Yastrebov A.: Analysis of Fuzzy Cognitive Maps with Multi-Step Learning Algorithms in Valuation of Owner-Occupied Homes. IEEE International Conference on Fuzzy Systems (FUZZIEEE), Beijing, China, 2014, 1029–1035.
Słoń G.: Application of Models of Relational Fuzzy Cognitive Maps for Prediction of Work of Complex Systems. 13th International Conference ICAISC 2014, Zakopane 2014, 307–318.
Stach W., Kurgan L., Pedrycz W.: Data-Driven Nonlinear Hebbian Learning Method for Fuzzy Cognitive Maps. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2008, 1975–1981.
Stach W., Kurgan L., Pedrycz W., Reformat M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems 153(3)/2005, 371–401.
Stach W., Pedrycz W., Kurgan L.A.: Learning of fuzzy cognitive maps using density estimate. IEEE Trans. on Systems, Man, and Cybernetics Part B, 42(3)/2012, 900–912.
Breese J.S., Heckerman D., Kadie C.M.: Anonymous Microsoft Web Data Set, http://mlr.cs.umass.edu/ml/datasets/Anonymous+Microsoft+Web+Data, [16.04.2016]
Article Details
Abstract views: 259
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
